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Lecture 2

Adiabatic potentials

The previous lecture was devoted to the basic ingredients of adiabatic potentials for
rf-dressed atoms: spin transformations, spin interaction with static or rf fields, and the
dressed state picture. We already discussed the effect of space dependence for a static
magnetic field, which is used for magnetic trapping, and the finite lifetime due to non
adiabatic transitions (Majorana losses). This lecture will introduce space dependence for
the dressed atom in the presence of a rf field, which leads to an rf adiabatic potential.
Only a few examples will be given, involving a limited number of experiments in a few
groups.

1 Adiabatic potentials

In this lecture, the static magnetic field depends on position, like in a magnetic trap. It is
easy to show from the Maxwell equations that if its amplitude depends on r, its direction
must also vary with position.1 We have then B0(r) = B0(r)u(r). The local Larmor
frequency is ω0(r) = |gS |µBB0(r)/~.

1.1 Adiabatic energies

In addition to the static magnetic field, we introduce a rf field, oscillating at a frequency
ω, chosen in the typical range of the Larmor frequency. At some particular positions, the
Larmor frequency is exactly ω. The locus of the points such that ω0(r) = ω is a surface
in space, characterized by a given value of the magnetic field B0 = ~ω/(|gS |µB), which
we refer to as the resonance surface. This surface is determined by the choice of ω. It is
often topologically equivalent to a sphere.

The system is described by the following hamiltonian:

Ĥ =
P̂2

2M
+
gsµB
~

B0(R̂) Ŝ · u(r) +

{
gsµB
~

B1(R̂)

2
e−iεωtŜ · ε(R̂) + h.c.

}
, (1)

where we have taken a classical description for the field, with complex amplitude B1(r)
and complex polarization ε(r).

Assuming that the adiabatic approximation is valid, see Lecture 1, section 2, we will
take a semi-classical approach to describe the atom and replace the positions and momen-
tum operators by their average value r and p. At each fixed position r, we can apply the
procedure described in the last lecture to get the spin eigenstates and the eigenenergies:

1Assume B0(r) = B0(r)uz. Then ∇ · B0 = 0 ⇒ ∂zB0 = 0, while ∇ × B0 = 0 ⇒ ∂xB0 = 0 and
∂yB0 = 0, which implies than B0 is uniform.
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apply a rotation of angle εωt around the axis u(r), apply the rotating wave approxima-
tion to remove counter-rotating terms, and diagonalize the effective, time-independent
hamiltonian.

An important point is that the σε polarization, which the only efficient component to
couple spin state in the RWA, must be defined with respect to the local quantization axis
u(r). Using the local spherical basis (e+(r), e−(r),u(r)), the relevant rf coupling is

Ω+(r) = −
√

2
gsµB
~

B1(r)

2
e∗+(r) · ε(r). (2)

It is clear from this expression that, even if the rf amplitude B1 is homogeneous, the Rabi
frequency is position dependent, because of the position dependent direction of the static
magnetic field.

The eigenstates and their energies now depend on the local detuning δ(r) = ω−ω0(r)
and on the local coupling |Ω+(r)|. The energy of the adiabatic state |m〉adia at a fixed
point r are

Vm(r) = m~
√
δ(r)2 + |Ω+(r)|2. (3)

They act as a potential for the atoms if the spin can follow the local eigenstate while the
atom in moving.

In general, the maximally polarized state |m = S〉adia is used to trap atoms. For a
spin 1 or 1/2, this is the only trappable state around the resonance point. For S > 1,
this choice allows to suppress inelastic collisions: the spin of the atoms initially in a non
fully polarized state can flip in a collision, and cause losses. The same is also true in a
magnetic trap. One may wonder if this stays true for dressed spin, as the direction of
the quantization field rotates at frequency ω. However, all the spins at the same location
rotate in phase, and the collision is so quick that the quantization field can be considered
fixed during the collision time. Polarizing the atoms in the extremal state |m = S〉adia is
thus an efficient way to prevent inelastic collisions in an adiabatic potential [1].

In this adiabatic state |m = S〉adia, the potential energy is always positive

VS(r) = S~
√
δ(r)2 + |Ω+(r)|2.

1.2 Bubble traps

To understand better the shape of the adiabatic potential, let us first assume that the rf
effective coupling |Ω+(r)| is homogeneous and equal to Ω. This is relevant if the direction
of the static field varies only slightly close to the potential minimum of the adiabatic
potential. It is then clear that, in the absence of gravity, the potential is minimum where
δ(r) = 0, that is on the isomagnetic resonant surface defined by ω0(r) = ω. This provides
us with very anisotropic traps, where one direction transverse to the isomagnetic surface is
confined, and may be strongly confined, by the avoided crossing of the adiabatic potential,
while the directions parallel to the surface are free to move.

How much are the atoms indeed confined to an isomagnetic surface δ(r) = 0? Let us
evaluate the strength of this. By definition, the direction normal to the surface is given
by the gradient of the Larmor frequency ∇ω0. Along this direction, locally, the variations
of ω0 are linear, and so are the variations of δ: δ(r + ∆r) ' ∆r ·∇ω0. We can expand
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VS around r to determine the oscillation frequency in the harmonic approximation in the
direction ∇ω0 normal to the surface. We find:

ωtransverse = α

√
S~
MΩ

, (4)

where α = |∇ω0| is the local magnetic gradient in units of frequency. This formula is
analogous than the one giving the largest of the two frequencies of a cigar-shape Ioffe-
Pritchard trap. However, here the Larmor frequency appearing in the denominator, and
typically of order 1 MHz, is replaced by the Rabi frequency, typically between 20 and
200 kHz. For a similar magnetic gradient, the confinement to the isomagnetic surface in
an adiabatic potential is thus significantly larger than what is obtained in a IP trap. The
transverse confinement frequency is typically in the range of a few kHz. We can thus
have a good idea of the trap geometry by assuming that the atoms will be confined to
the isomagnetic surface. The effect of the position dependence of |Ω+(r)| or of gravity is
essentially to shape a refined landscape inside this surface.

If the static magnetic field B(r) has a local minimum Bmin, as it is the case in a
magnetic trap, the isomagnetic surfaces close to this minimum are typically ellipsoids (a
trap is generally harmonic close to its minimum). This is the basic idea for a bubble trap,
as proposed by Zobay and Garraway [2, 3] and first realized by Colombe et al. [4], see
Fig. 1.

Figure 1: Cold rf-dressed atoms confined in an adiabatic potential. The static magnetic
field comes from a cigar shape Ioffe-Pritchard trap. Atoms are spread around an ellipsoid,
isomagnetic surface of the magnetic static field. The atomic density is higher at the bottom
of the ellipsoid, where gravity pulls the atoms. Figure from O. Morizot’s thesis [5].

When gravity is included, the isomagnetic surface is no longer an isopotential of the
total potential Vtot(r) = S~

√
δ(r)2 + |Ω+|2 + Mgz. There is a single minimum, at the

bottom of the ellipsoid. Depending on the energy of the cloud, which for thermal atoms
is their temperature, the atoms will fill the bubble up to a certain height given by the
barometric energy: hmax ∼ kBT/(Mg). For a Bose-Einstein condensate, the relevant
energy scale is the chemical potential and hmax ∼ µ/(Mg).

The radii of the resonant ellipsoid can be adjusted with the choice of the rf frequency
ω. Increasing ω from the minimum Larmor frequency in the trap center ω0,min makes the
bubble inflate, so that the z radius becomes larger than hmax at some point. Above this
frequency, the atoms are confined to a curved plane. The pictures of Fig. 2 show ultra cold
atoms confined in such an anisotropic trap, for various values of the dressing frequency ω.
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Figure 2: Cold rf-dressed atoms confined in an adiabatic potential, for different values of
the dressing frequency [4]. Top: no rf dressing, atoms are trapped in a Ioffe-Pritchard
trap with a cigar shape. The Larmor frequency at the trap bottom is 1.3 MHz. Middle: rf
dressing field at 3 MHz. The atoms occupy the lower part of a bubble. The field of view
is 4.5 mm (horizontally) × 1.2 mm (vertically). The center of mass is shifted vertically by
130 µm. Lower picture: dressing frequency 8 MHz. The isomagnetic bubble is larger, the
atoms are more shifted (by 450 µm) and the cloud is even more anisotropic. The resonant
isomagnetic surfaces are marked with a white line. Figure from O. Morizot’s thesis [5].

1.3 Loading from a magnetic trap

Adiabatic potentials could in principle be loaded from a MOT, like magnetic traps. How-
ever, their trapping volume is in general much smaller, as the interesting feature of the
large anisotropy also comes with a small volume. Moreover, spin flips can occur at high
temperature (a few tens of µK) because the relevant effective splitting frequency is Ω, of
order 100 kHz, in general smaller than the minimum Larmor frequency ω0,min in a mag-
netic trap, of order 1 MHz. Adiabatic potentials are very well adapted to trap ultra cold
atoms or condensates, pre-cooled by evaporative cooling in a magnetic trap.

The loading procedure from a magnetic trap presenting a non zero Larmor frequency
ω0,min at its bottom is straightforward, and is sketched on Fig. 3. The idea is to operate a
frequency sweep from an initial frequency below ω0,min, up to the desired final value above
ω0,min, in the spirit of the frequency sweep described in section 3.2 of Lecture 1. The
rf field is switched on at a fixed negative detuning δ = ω − ω0,min, in a time sufficiently
long to ensure the adiabatic condition Ω̇� δ2. The initial, trapped, upper magnetic state
|εS〉z is connected to the upper dressed state |S〉u. When the rf frequency is subsequently
increased, the atoms stay in this upper adiabatic state if the ramp is slow, so that δ̇ � Ω2.
Once ω reaches ω0,min, the atoms have reached the resonant surface, and they remain at
this surface, which is now a potential minimum, as the rf frequency is further increased.
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Figure 4.8 – Évolution des potentiels adiabatiques lors de la rampe de fréquence RF réalisant le chargement du piège
habillé. Les désaccords �/2⇡ valent respectivement (a) �300 kHz, (b) 0 kHz, (c) +200 kHz et (d) +700 kHz. Le couplage
est constant, ⌦max/2⇡ = 200 kHz. L’origine en abscisses est le centre du nuage piégé dans le champ magnétique QUIC seul,
sans onde radiofréquence, en tenant compte de la gravité. Le potentiel tracé en gras est celui de l’état habillé |20i.
Change in adiabatic potentials during the ascending RF sweep used to load the dressed trap. The first step is to turn on the RF
wave progressively from ⌦=0 to ⌦=⌦max, at an initial detuning �i =!i � !0 < 0. This ensures that the atoms are transferred
from the bare state |2i to the dressed state |20i (see fig. 4.3). The RF frequency is then swept up to the desired value. The graphs
are plotted at constant RF coupling strength ⌦max/2⇡=200 kHz, for detunings (a) �=�300 kHz, (b) 0 kHz, (c) +200 kHz and (d)
+700 kHz. !0 =1.300MHz (Bmin =1.85G) ; gravity is taken into account. When �< 0, the atoms stay approximately at the centre of
the QUIC trap and see a varying detuning �. With typical experimental parameters, the rate @�/@t far too slow to cause non-adiabatic
transitions. When �> 0, the atoms follow the avoided crossing and see a constant detuning � ' 0. The adiabaticity criterion (4.22)
for the following of the dressed spin state |20i is easily fulfilled during the whole loading stage.

Figure 3: Loading procedure from a magnetic trap with non zero minimum. The adiabatic
potentials are represented for the five states of a S = 2 spin, along the vertical axis. Gravity
is included. From left to right, the rf frequency is ramped from below resonance to the final
value. The atoms start in the upper potential, which is the same as the magnetic trapping
potential for the leftmost picture. The second picture corresponds to the resonance at
the bottom of the trap, ω = ω0,min. Above ω0,min, there is a single trap minimum at
the bottom of the ellipsoid, due to gravity, which position z changes with the dressing
frequency. Figure from Y. Colombe’s thesis [6].

1.4 Phase jumps, frequency jumps

Phase or frequency jumps during the loading ramp leads to trap losses. The phase should
be continuous, and DDS2 devices are preferred to generate the rf source. The ramp is done
by a number of small frequency steps. Each step should be kept very small to prevent
losses by spin projection onto the new, different axis. See details in Ref. [7], where you
will also find an analysis on the possible sources of heating.

2 Effect of the rf polarization: from tube to double well

2.1 Isomagnetic surfaces

The simplified view of a uniform |Ω+(r)| is often not sufficient to describe correctly the
adiabatic potential. In some cases, the trap geometry is strongly modified by an inhomo-
geneous effective coupling due to the inhomogeneity of the magnetic field orientation. If
|Ω+| varies faster than δ with position, the position of the trap minimum can be governed
by the position of the coupling minimum. Most of the time, however, the variation in δ is
faster,so that the atoms stay within the resonant surface. The shape of the trap is nev-
ertheless strongly affected by either gravity or a variation of |Ω+(r)| within the resonant
surface. In this section, we describe an atom chip experiment which took advantage of
this effect to realize a double well potential.

The static magnetic field we start from is again a Ioffe-Pritchard magnetic trap. Let
us write explicitly the magnetic field in this trap:

B0(r) = (Bmin +
b′′

2
z2) ez + b′(x ex − y ey) = Bz(z) ez + b′(x ex − y ey).

2Direct Digital Synthesis
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Its modulus is

B0(r) = Bmin

[
1 +

b′′

2Bmin
z2 +

b′2

2B2
min

(x2 + y2)

]
= B0(ρ, z)

up to second order in x, y, z, giving rise to a cylindrically symmetric cigar-shape harmonic
trapping near the center, with frequencies ωx = ωy � ωz. Away from the z axis, where

ρ =
√
x2 + y2 � Bmin/b

′, the trap is closer to a linear potential, with B0(r) ' b′ρ.
Frequency units are sometimes more convenient. The Larmor frequency is denoted

ω0(ρ, z), with a minimum value ωmin at the centre, and the gradient in frequency units is
α = |gS |µBb′/~. We also define η = |gS |µBb′′/~, the curvature in units of frequency. We
can then also write

ω0(ρ, z) = ω0(0, z) +
α2

2ωmin
ρ2, with ω0(0, z) = ωmin +

1

2
ηz2.

The resonant surface is defined by ω0(ρres(z), z) = ω. At each longitudinal position z,
the resonant radius ρres is given by

ρres(z) =
1

α

√
ω2 −

(
ωmin +

ηz2

2

)2

. (5)

It depends only slowly on z. For ω ∼ ωmin, the maximum radius ρ0 = ρres(0) scales like√
ω − ωmin. For rf frequencies much larger than ωmin, the dependence becomes linear:

ρ0 '
ω

α
for ω � ωmin.

Tuning the frequency is thus a natural and efficient way to increase the radius of the
isomagnetic surface.

2.2 Local circular polarization

Near the magnetic trap bottom, the axis of the magnetic field is close to ez. It is then
natural to chose for the rf field a polarization which is either σ+ or σ with respect to this
axis. We assume that the rf field is homogeneous, in amplitude and polarization. The rf
magnetic field reads

B1 =
B1

2
ε e−iωt + c.c.

where ε is a complex polarization. We must find the projection of this field onto the local
σ+ polarization, the quantization axis being

u =
Bz(r)

B0(r)
ez +

b′x
B0(r)

ex −
b′y
B0(r)

ey.

It is convenient to introduce a new basis, adapted to this problem. Let v and w be defined
as

v =
x

ρ
ex −

y

ρ
ey w =

y

ρ
ex +

x

ρ
ey.
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(v,w, ez) is an orthonormal basis. In this basis, u writes

u =
Bz(r)

B0(r)
ez +

b′ρ
B0(r)

v.

It is the transformed of ez by a certain rotation around w. The same rotation doesn’t
affect w, and transforms v into

v′ = − b′ρ
B0(r)

ez +
Bz(r)

B0(r)
v.

With respect to the local direction of the magnetic field u, the σ+ polarization is thus
defined, apart from a global phase factor, as

e+,u = − 1√
2

(
v′ + iw

)
.

The effective Rabi frequency is then deduced from the scalar product e∗+,u · ε.

2.3 Circular polarization

For a circular rf polarization along z, ε = − 1√
2

(ex + iey) and we find

Bσ+

+ =
B1

4

[
Bz
B0

x

ρ
+
x

ρ
+ i

(
−Bz
B0

y

ρ
− y

ρ

)]
=
B1

4

(
1 +

Bz
B0

)
x− iy
ρ

.

|B+| =
B1

4

(
1 +

Bz(z)

B0(z, ρ)

)
.

Defining Ω as the maximum coupling, corresponding to ~Ω = |gS |µBB1/2, we have

|Ω+(r)| = |Ω+(ρ, z)| = Ω

2

[
1 +

ω0(0, z)

ω0(ρ, z)

]
.

The rf coupling reaches its maximum Ω on the z axis, and is reduced as ρ increases.
The coupling does not depend on the polar angle θ, and the rotational invariance of the
IP potential is preserved. On the resonance surface ω0 = ω, the rf coupling is

|Ω+(ρ, z)| = Ω

2

[
1 +

ω0(0, z)

ω

]
.

The bubble geometry described at section 1.2 is not much changed, see Fig. 4, left.
Because of the reduction of the coupling with increasing ρ, the potential minimum is
simply shifted very slightly to a larger radius with respect to the resonant radius ρres(z).
Along z, on the resonance surface, the minimum coupling is obtained for z = 0. If one can
manage to compensate for gravity, the total potential is ring shaped, or more precisely
tubular, because it is very elongated along z [8].
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Figure 4: Isopotential lines in the ring trap (left) and the double well trap (right), seen in
the xy plane. Gravity is along y and is taken into account.

2.4 Linear polarization

The situation is quite different for a linear (σ) polarization. If gravity is along the y axis,
let us consider a rf field polarized along x: ε = ex. The effective rf amplitude is

Bσ
+ =

B1

2
√

2

[
−Bz
B0

x

ρ
+ i

y

ρ

]

|Bσ
+| =

B1

2
√

2

[
B2
z

B2
0

x2

ρ2
+
y2

ρ2

]
=

B1

2
√

2

[
1− b′2x2

B2
0

]
.

The coupling is lower on the x axis than on the y axis, by a factor B2
z/B

2
0 . On the resonant

surface ρ = ρres(z), the effective Rabi coupling is thus

|Ω+| = Ω

[
1− α2x2

ω2

]
, |x| ≤ ρres(z)

where Ω is the maximum coupling, reached in the x = 0 plane. |Ω+| is minimum for y = 0
and x = ρres(z), for which |Ω+| = Ω [ω0(0, z)/ω]2. The absolute coupling minimum is thus
|Ω+| = Ω [ωmin/ω]2, obtained at the two equatorial positions (±ρ0, 0, 0).

Let us look for the potential minimum inside the resonant surface. Because of the
reduced coupling at these points, in the absence of gravity, the potential has two min-
ima, located at x = ±ρ0, y = 0, z = 0, see Fig. 4, right. The energy at these points is
S~Ω

[
1− (αρ0/ω)2

]
, to be compared to the highest energy points at x = 0, y = ±ρres(z)

where the energy is S~Ω. The energy difference due to the inhomogeneity in the rf coupling
is equal to S~Ω (αρ0/ω)2.

As discussed in section 2.1, the resonant radius ρ0 is tuned by changing the rf frequency.
For ω ∼ ωmin, the maximum radius ρ0 scales like

√
ω − ωmin. For rf frequencies much

larger than ωmin, ρ0 ' ω/α. It is then straightforward to adjust at will the distance 2ρ0

between the two wells by tuning the rf frequency, which has been done to perform atom
interferometry on a chip [9], see Fig. 5.
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Figure 5: First experimental realization of the rf double well trap [9]. The distance between
two Bose-Einstein condensates in elongated traps is adjusted with the rf frequency.

We must now discuss the effect of gravity, which in the case of the tubular potential
would significantly change the shape of the minimum if it is not compensated. Here,
gravity won’t affect qualitatively the double well trap if the energy difference is produces
between the equator and the bottom of the resonant surface is less pronounced than the
rf coupling difference, that is if

Mgρres < S~Ω
α2ρ2

res

ω2
. (6)

To discuss if this relation is fulfilled, we introduce the parameter β = S ~α
Mg , which is the

ratio between the magnetic force and the gravity force. It has to be larger than one, for
the IP trap to confine atoms against gravity. The condition (6) can be written using β as:

1 < β
αρres

ω

Ω

ω
.

The ratio αρres/ω is always less than one, see Eq.(5), and reaches one in the limit
where ω � ωmin. The condition (6) is then fulfilled for all double well distances if

1 < β
Ω

ω
, or ω < βΩ. (7)

If we want to stay in the RWA where Ω� ω, the magnetic gradient must be much stronger
than gravity, β � 1. This explains why atom chips are ideal devices for these double well
trap, as they provide us with large magnetic gradients.

3 The dressed quadrupole trap

Another interesting case, which allows to obtain very flat traps for 2D quantum gases, is
the adiabatic potential obtained from dressing atoms in a quadrupole field [10, 11]. We
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will discuss this trap here.

3.1 Magnetic field geometry

The magnetic field is linear in the position, for example:

B0(r) = b′(x ex + y ey − 2z ez). (8)

The factor 2 in the z gradient ensure a vanishing divergence of the magnetic field. The
corresponding Larmor frequency is

ω0(r) = α
√
x2 + y2 + 4z2, (9)

where α = |gS |µBb′/~.
The isomagnetic surfaces is this case are ellipsoids, with a radius smaller in the vertical

direction by a factor of two. For a given rf frequency ω, the equation of the resonant
ellipsoid is

x2 + y2 + 4z2 = r2
0,

where the ellipsoid horizontal radius is related to the frequency through

r0 =
ω

α
. (10)

The naive potential, forgetting polarization issues, is thus a bubble, the atoms being
attracted to its bottom by gravity. This explains why this configuration is well adapted
to the trapping of two-dimensional gases.

3.2 Local basis

Again, in order to determine the adiabatic potential, we need to know the local e+ vector.
The direction of the magnetic field is given by

u =
ρ eρ − 2z ez√
ρ2 + 4z2

. (11)

ρ is the polar coordinate in the xy plane, ρ eρ = x ex + y ey. In the following, we will use
the generalized distance to the center of the quadrupole,

`(ρ, z) =
√
ρ2 + 4z2. (12)

In order to write the local circular polarization, we will use the orthogonal basis
(u,uθ,uφ) defined by

u =
ρ eρ − 2z ez

`
, (13)

uθ = −2z eρ + ρ ez
`

, (14)

uφ =
−yex + x ey

ρ
. (15)
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The unitary vector for the relevant circular polarization is thus

e+ = − 1√
2

(uθ + iuφ) =
1√
2ρ`

(
ρ2 ez + 2zρ eρ + i`yex − i`xey

)
.

e+ =
1√
2ρ`

[
ρ2 ez + (2zx+ i`y) ex + (2zy − i`x)ey

]
. (16)

3.3 Circular polarization

The magnetic field at the bottom of the ellipsoid (0, 0,−r0/2) is aligned along the +z
axis. It is then natural to consider first a circularly polarized field. We will assume, to
avoid heavy notation, that gS is positive. To maximize the coupling at the bottom, we
will hence chose a positive circular polarization aligned with z:

ε = − 1√
2

(ex + iey) .

The efficient Rabi component is then

Ω+ = Ω e∗+ · ε = − Ω

2ρ`
(2zx− i`y + 2izy − `x) =

Ω

2ρ`
(x+ iy)(`− 2z).

|Ω+| =
Ω

2

(
1− 2z

`

)
. (17)

Ω is the maximum Rabi frequency, obtained as expected on the negative side of the z axis,
where ` = −2z. On the other hand, the effective coupling vanishes on the positive side of
the z axis, where ` = 2z. The polarization here is σ− with respect to the orientation of
the magnetic field, which points downwards. This results on a half axis of zero coupling.
The trap minimum must lie away from this +z axis, in order to prevent spin flips.

The total potential, including gravity, in the extremal state m = S is

V (r) = S~

√
[α`(ρ, z)− ω]2 +

Ω2

4

[
1− 2z

`(ρ, z)

]2

+Mgz. (18)

We can immediately notice that the potential is rotationally invariant around z, and
depends only on ρ and z. The first term will be minimum when both the square detuning
and the square coupling vanish, at the point (0, 0, r0/2). However, this is the point of the
resonant surface where gravity is maximum, and it will help bringing the atoms to the
bottom of the ellipsoid, away from the region of vanishing Rabi frequency.

Again, it is reasonable to assume that the minimum will lie on the resonance surface,
which allows to set δ to zero. Let us write the value of the potential for atoms living on
the two-dimensional resonance surface `(ρ, z) = r0. It depends only on z now, as ρ is given
by z and r0:

Vsurf(z) = S~
Ω

2

(
1− 2z

r0

)
+Mgz, |z| < r0

2
.

The potential on the surface is linear in z.
From this expression, it is clear that there will be a competition between the gradient

of rf coupling and gravity. Let us use the same parameter β = S ~α
Mg as in section 2.4. It
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has to be larger than one if the quadrupole field itself is supposed to confine atoms against
gravity. If Mgr0 > S~Ω, that is for ω > βΩ, gravity is dominant and the minimum is at
z = −r0/2, at the bottom of the ellipsoid where the coupling is maximum. On the other
hand, if ω < βΩ, the atoms are pushed upwards to the point of the ellipsoid where the
coupling vanishes, and the trap is unstable with respect to Landau-Zener losses. For a
given coupling, this sets a minimum frequency which should be used:

ω > βΩ. (19)

In contrast to the requirement for a double well, this is now easily compatible with RWA,
which requires ω � Ω. The trap is thus normally at the bottom of the ellipsoid, even for
moderate gradients.

3.4 Isotropic trap for a 2D gas

Let us assume that we have indeed ω > βΩ. In the vicinity of the bottom of the resonant
surface, we can develop the full potential to find the oscillation frequencies. In the vertical
direction, the trap is similar to the radial direction of a Ioffe Pritchard magnetic trap:

V (0, 0, z) = S~
√
α2
(
z +

r0

2

)2
+ Ω2 +Mgz ' S~Ω +Mgz + S~

α2

2Ω

(
z +

r0

2

)2
.

The vertical oscillation frequency is thus

ωz ' α
√

S~
MΩ

. (20)

A corrections to this expression arises because the minimum does not strictly belongs to
the resonant surface, due of gravity [11]. The analogy with the Ioffe Pritchard trap is
immediate: the Larmor frequency is just replaced by the Rabi frequency. By analogy with
the IP trap, we expect for the loss rate due to non adiabatic spin flips an expression similar
than the one given by Sukumar and Brink [12] in the case of the IP trap, for S = 1:

ΓLZ ' πωz e
−2Ω

ωz . (21)

Again, the exponent scales as Ω3/2/α. For example, for rubidium atoms in F = 1 with
magnetic gradients of about 100 G·cm−1, a Rabi frequency above 10 kHz is necessary to
avoid Landau-Zener losses (recent measurements at LPL).

In the horizontal direction, the trap is isotropic. The oscillation frequency is imposed
by the geometry of the ellipsoid and by gravity: the motion is pendulum-like, with an
oscillation frequency in the harmonic approximation of order

√
g/2r0. More precisely, if

we neglect the very small vertical gravitational sag of the potential minimum with respect
to the resonant surface, the expression of the horizontal frequency is

ωρ '
√

g

2r0

[
1− βΩ

ω

]1/2

. (22)

The correction in βΩ/ω comes from the vertical dependence of the Rabi frequency. The
exact expression is given in the reference [11]. The two values (20) and (22) however give
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a very good estimate of the oscillation frequencies. The trap is very anisotropic, and the
aspect ration is approximately

ωz
ωρ
' α

√
2S~r0

MgΩ
=

√
2S~αω
MgΩ

=

√
βω

Ω
>
ω

Ω
. (23)

The last inequality is the condition (19) for the trap minimum to be at the bottom of the
ellipsoid. We see here that as soon as the rf field fulfills the RWA ω � Ω, the trap is
naturally very anisotropic. It has been used to prepare quasi two-dimensional quantum
gases [11].

3.5 Linear polarization

If the polarization is chosen to be linear, the best choice is a horizontal polarization, to
ensure a maximum coupling at the bottom. Let us chose a polarization ex along the x
axis. The rf coupling is

Ω+ =
Ω√
2ρ`

(2zx− i`y).

|Ω+| = Ω

√
4z2x2 + `2y2

ρ`
= Ω

√
`2ρ2 − ρ2x2

ρ`
= Ω

√
1− x2

`2
.

Ω is defined as the maximum coupling. If we again assume that the potential minimum
will lie on the resonance surface, we end up with

Vsurf(r) = S~Ω

√
1− x2

r2
0

+Mgz, |z| < r0

2
, |x| < r0, `(ρ, z) = r0.

Now, the rotational symmetry is broken by the choice of the rf polarization. There is
again a competition between gravity and the coupling gradient, in the y = 0 plane where
Vsurf(z) = 2S~Ωz/r0 +Mgz. Gravity wins if ω > 2βΩ. This condition is almost the same
as in the previous case, and is fulfilled within RWA. For large magnetic gradients, the rf
frequency must be increased to fulfill the condition on gravity.

The vertical oscillation frequency at the trap bottom is unchanged with respect to the
previous case (20). As the coupling strength is now uniform in the yz plane, the oscillation
frequency along y is the bare pendulum frequency:

ωy =

√
g

2r0
. (24)

The x oscillation frequency is lowered by the attraction to the holes.

ωx '
√

g

2r0

[
1− 2βΩ

ω

]1/2

. (25)

This effect is twice as large as in the circularly polarized case, because the holes are at
half the height. The condition on gravity is clear from the expression of the oscillation
frequency, which would vanish at the limit ω = 2βΩ where the single minimum at the
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bottom disappear, and the two minima at the equator appear — with zero coupling and
strong spin flips.

Here, the important point is that, while the trap is still extremely anisotropic in the
vertical versus horizontal directions, it also becomes anisotropic in-plane, with an aspect

ratio
[
1− 2βΩ

ω

]1/2
controlled by the rf amplitude. The direction of this anisotropy is

controlled by the polarization axis. In short, modulating the direction of the polarization
axis or the rf amplitude allows to set the gas into rotation or excite quadrupole oscillations,
respectively. This has been used recently in our group to study collective modes of a two-
dimensional superfluid, with an anisotropy of about 1.2 [13]. The smooth character of the
adiabatic potential [11, 14] is very well suited for such studies.

How much can we increase the in-plane anisotropy? We remark that the two aspect
ratio ωz/ωy and ωx/ωy are related:

ωy
ωz

=

√
Ω

βω
⇒ ωx

ωy
=

[
1− 2βΩ

ω

]1/2

=

[
1− 2β2

(
ωy
ωz

)2
]1/2

.

For an important in-plane anisotropy, βωy/ωz should approach 1/
√

2. In order to stay
in the 2D regime, which requires in particular a strong anisotropy ωz � ωy, very large
gradients β � 1 are necessary. Experimentally, the in-plane anisotropy which can be
obtained thus depends on the maximal feasible gradient.

3.6 Ring trap

Starting from a dressed quadrupole trap with a circular polarization, a ring trap can be
obtained by cutting the ellipsoid by a horizontal plane. This can be done with a laser,
using the dipole force of a standing wave [15] or of a pair of blue detuned light sheets [16].

The ring radius is easily adjustable dynamically, for example with the frequency ω.
On the other hand, using a non circular polarization, with an additional component on
x for example, induces a deformation of the ring along x. Rotating the direction of this
additional rf component allows to induce a rotation of the atoms in the ring and create a
superflow.

4 What is not in this lecture notes

A future version of this lecture notes would include the description of time-averaged adia-
batic potentials (TAAP) [17], which have been implemented in the group of Chris Foot [18,
19]. On this subject, I recommend the PhD thesis of Markus Gildemeister, see https://

www2.physics.ox.ac.uk/sites/default/files/2013-01-19/dphil_gildemeister_pdf_

59116.pdf.
The effects of a strong coupling, beyond the rotating wave approximation, have been

investigated in the group of Jörg Schmiedmayer, see [20].
Using another rf frequency is very useful either for performing rf spectroscopy [20,21]

or rf evaporation [22]. Rf spectroscopy allows a determination of the Rabi frequency with
an accuracy of below 0.5% [11].
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Figure 6: Principle of the ring trap: intersecting a bubble with a plane [16].
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sionnel. PhD thesis, Université Paris XIII, 2004.
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