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Lecture 1

Spins and fields

Warning: These lecture notes have been written (quickly) as a support of a Les Houches
course on adiabatic potentials for rf-dressed atoms. They may still contain some errors.
Comments are welcome.

This first lecture is devoted to the interaction of a spin with a magnetic field, first
alone, then with an additional radio-frequency field. The effect of these fields is to rotate
the spin. When, in addition, the field magnitude or direction depend on position, the
question of adiabatic following of the quantization axis determined by the direction of the
static magnetic field becomes crucial. In this lecture, we introduce the basic ingredients
necessary to understand adiabatic potentials.

The following references may be useful to the reader:

1. on spin-field interaction and on the dressed state approach: a recent book by Cohen-
Tannoudji and Guéry-Odelin [1]. This book is also very useful for several other topics
covered by the school.

2. on adiabatic potentials: papers by Zobay and Garraway 2004 [2], Lesanovsky et al.
2006 [3]; a review paper by Barry Garraway and myself is in preparation for IOP
(ask me...).

3. on spin flips and Landau-Zener transitions: [4], [5].

1 Spin rotation

1.1 Brief reminder on spin operators

A spin operator Ŝ is a vector operator describing the spin S of a particle. S ≥ 0 is an
integer for bosonic particles, or a half integer for fermions. The projections of Ŝ on any
axis u is Ŝu = Ŝ · u, and is an operator in the space of spin vectors.

Remark What we call here spin also apply to angular momentum in general. For the
particles having a nucleus spin I, an orbital angular momentum L and an electronic spin S,
the total angular momentum operator relevant to the interaction with weak magnetic field
is F = J+ I = L+S+ I. For example, for rubidium 87 atoms in their 5S1/2 ground state,
we have I = 3/2, L = 0 and S = 1/2, such that J = 1/2 and F ∈ {|I−J |, ...|I+J |}: F = 1
or F = 2, which are the two hyperfine states of the atomic ground state. For the purpose
of this lecture, where spins will interact with static magnetic field or radio-frequency fields,
the angular momentum we must consider is a fixed F . In the following, we will use Ŝ as
the spin notation, which must be understood as F̂ in the case of an alkali atom in its
ground state.

1



Given a quantization axis ez, we can find a basis where both Ŝ2 and Ŝz are diagonal.
The spin eigenstates are labelled |S,m〉 where m ∈ {−S,−S + 1, . . . , S − 1, S}, with
eigenenergies given by

Ŝ2|S,m〉 = S(S + 1)~2|S,m〉, (1)

Ŝz|S,m〉 = m~|S,m〉. (2)

The other projections of Ŝ in a orthogonal basis of axes (x, y, z), however, are not
diagonal in this basis. The spin projection operators verify the following commutation
relations:

[Ŝx, Ŝy] = i~Ŝz, [Ŝy, Ŝz] = i~Ŝx, [Ŝz, Ŝx] = i~Ŝy. (3)

We also introduce the rising and lowering operators Ŝ+ and Ŝ−, defined as

Ŝ± = Ŝx ± iŜy. (4)

It is clear from their definition that [Ŝ±]† = Ŝ∓. Their commutation relations with Ŝz are:

[Ŝz, Ŝ±] = ±~Ŝ±. (5)

From these relations, we can deduce their effect on |S,m〉, which is to increase (resp.
decrease) m by one unit:

Ŝ±|S,m〉 = ~
√
S(S + 1)−m(m± 1)|S,m± 1〉. (6)

1.2 Spin rotation operators

From now on, as we will concentrate on operators with do not change the value of S, we
will simplify the spin state notation and use |m〉, where the spin number S is implicit, or
|m〉z to emphasize that the quantization axis is chosen along z. Conversely, an eigenstate
of Ŝu will be labeled |m〉u.

The operator which allows to transform |m〉z into |m〉z′ where z′ is a new quantization
axis is a rotation operator. The rotation around any axis u by an angle α is described by
the unitary operator

R̂u(α) = exp

[
− i
~
αŜ · u

]
. (7)

The inverse rotation, by an angle−α, is described by its hermitien conjugate: [R̂u(α)]†R̂u(α) =
1. Starting from an eigenstate |m〉z of Ŝz, the effect of R̂ = R̂u(α) is to give the corre-
sponding eigenstate |m〉z′ = R̂†|m〉z of the rotated operator Ŝz′ = R̂†ŜzR̂:

|m〉z = R̂|m〉z′ ⇒ Ŝz′ |m〉z′ = R̂†ŜzR̂|m〉z′ = R̂†Ŝz|m〉z = m~R̂†|m〉z = |m〉z′ .

The rotation by the sum of two angles is simply the product of the two rotations:

R̂u(α+ β) = R̂u(α)R̂u(β).

However, as the spin projections do not commute, the composition of rotations around
different axes do not commute. A useful formula is the decomposition of a rotation around
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any vector u in terms of rotations around the basis axes (x, y, z). If the spherical angles
describing the direction of the unit vector u are θ, φ such that

u = sin θ (cosφex + sinφey) + cos θez, (8)

we can write
R̂u(α) = R̂z(φ)R̂y(θ)R̂z(α)[R̂y(θ)]

†[R̂z(φ)]†, (9)

or
R̂u(α) = R̂z(φ)R̂y(θ)R̂z(α)R̂y(−θ)R̂z(−φ), (10)

where R̂i stands for R̂ei . Starting from the right hand side, the two first rotations put
u on top of z, the central operator makes the rotation by α around z, and the two last
operators bring back u to its original position.

Important remark If we look at the rotation by 2π around any axis, we find that its
effect on a state |m〉u is

R̂u(2π)|m〉u = e−i
2π
~ Ŝu |m〉u = e−i2πm|m〉u = (−1)2m|m〉u.

For integer spins, 2m is even and the final state is the same as the initial state: the 2π
rotation is identity. For an odd spin, however, the final state is the opposite of the initial
state. We need to rotate by 4π to recover identity. This is linked to the spin statistics
theorem.

1.3 Rotation of usual spin operators

In the lecture, we will need to transform hamiltonians Ĥ through rotations, calculating
operators such as R̂†ĤR̂. In order to become more familiar with this transformation,
we give here its effect in simple cases. Let us first consider rotations by α around the
quantization axis z, such that R̂ = R̂z(α).[

R̂z(α)
]†
ŜzR̂z(α) = Ŝz, (11)[

R̂z(α)
]†
Ŝ±R̂z(α) = e±iαŜ±, (12)[

R̂z(α)
]†
ŜxR̂z(α) = cosα Ŝx − sinα Ŝy, (13)[

R̂z(α)
]†
ŜyR̂z(α) = sinα Ŝx + cosα Ŝy. (14)

By circular permutation, it is clear that we can also write, for rotations around x and y:[
R̂x(α)

]†
ŜyR̂x(α) = cosα Ŝy − sinα Ŝz, (15)[

R̂x(α)
]†
ŜzR̂x(α) = sinα Ŝy + cosα Ŝz, and (16)[

R̂y(α)
]†
ŜzR̂y(α) = cosα Ŝz − sinα Ŝx, (17)[

R̂y(α)
]†
ŜxR̂y(α) = sinα Ŝz + cosα Ŝx. (18)
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The effect of a rotation of Ŝ± around x or y is a bit more complicated, but directly deduced
from these equations and the definition of Ŝ±:[

R̂x(α)
]†
Ŝ+R̂x(α) = cos2 α

2
Ŝ+ + sin2 α

2
Ŝ− − i sinα Ŝz, (19)[

R̂x(α)
]†
Ŝ−R̂x(α) = sin2 α

2
Ŝ+ + cos2 α

2
Ŝ− + i sinα Ŝz, and (20)[

R̂y(α)
]†
Ŝ+R̂y(α) = cos2 α

2
Ŝ+ − sin2 α

2
Ŝ− + sinα Ŝz, (21)[

R̂y(α)
]†
Ŝ−R̂y(α) = − sin2 α

2
Ŝ+ + cos2 α

2
Ŝ− + sinα Ŝz. (22)

1.4 Two exercises

Exercise 1 Calculate the transformed operator Ŝu = Ŝ · u under the rotation R̂z(α).

Answer:

[R̂z(α)]†ŜuR̂z(α)

= [R̂z(α)]†
(

sin θ cosφ Ŝx + sin θ sinφ Ŝy + cos θ Ŝz

)
R̂z(α)

= sin θ cosφ
(

cosα Ŝx − sinα Ŝy

)
+ sin θ sinφ

(
cosα Ŝy + sinα Ŝx

)
+ cos θ Ŝz

= sin θ (cosφ cosα+ sinφ sinα) Ŝx + sin θ (sinφ cosα− cosφ sinα) Ŝy + cos θ Ŝz

= sin θ cos(φ− α) Ŝx + sin θ sin(φ− α) Ŝy + cos θ Ŝz.

The result is quite intuitive: the transformed projection is the projection on a unit vector
whose azimuthal angle has changed from φ to φ− α.

Exercise 2 Calculate the transformed operator Ŝz′ of Ŝz through the rotation R̂u(α).

Answer: You could replace R̂u(α) by its expression in terms of elementary rotations, but
this would be a nightmare... There is a much clever trick: first write ez in the (u,uθ,uφ)
orthonormal basis, where uθ and uφ are defined by

uθ = cos θ(cosφ ex + sinφ ey)− sin θ ez (23)

uφ = − sinφ ex + cosφ ey (24)

Within this new basis, we can write ez = cos θ u− sin θ uθ, such that

Ŝz = cos θ Ŝu − sin θ Ŝuθ .

Then use the rotation formulae, with the correspondence u↔ ez, uθ ↔ ex, uφ ↔ ey:

[R̂u(α)]†ŜzR̂u(α) = [R̂u(α)]†
(

cos θ Ŝu − sin θ Ŝuθ

)
R̂u(α)

= cos θ Ŝu − sin θ[R̂u(α)]†ŜuθR̂u(α)

= cos θ Ŝu − sin θ
(

cosα Ŝuθ − sinα Ŝuφ

)
.

That’s it! With these two exercises, you’re ready to perform any rotation in the spin
space.
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1.5 Time-dependent rotations

We will need to deal with time-dependent rotation angles, and with the derivatives or R
operators. Let us look into this here.

Let us consider first the simple case where the rotation axis, u, is fixed. The time
derivative of the rotation operator is

i~∂tR̂u(α(t)) = i~∂te
i
~α(t)Ŝu = α̇Ŝu e

i
~α(t)Ŝu = α̇ŜuR̂u(α) = α̇R̂u(α)Ŝu. (25)

This expression is simple, because the rotation operator R̂u(α) commutes with the spin
projection along the rotation axis Ŝu.

The situation is different if the rotation axis itself is time-dependent. This is a relevant
case for adiabatic potentials, but also for magnetic traps, where the natural quantization
axis, aligned with the static magnetic field, depends on position, and hence on time when
the atom moves in the trap. The vector u evolves with time:

u̇ = θ̇ uθ + φ̇ sin θ uφ.

By writing carefully i~∂tR̂u(α) as

i~∂tR̂u(α) = i~ lim
τ→0

1

τ

(
e
i
~α(t+τ)Ŝ·u(t+τ) − e

i
~α(t)Ŝ·u(t)

)
,

we see that terms involving spin projections Ŝuθ and Ŝuφ appear in the argument of the

exponential, which do not commute with R̂u(α) anymore.
We can find the time derivative of R̂u(α) by using the decomposition (10) in rotations

around fixed axes. The variations of α give the same expression as above, whereas the
variations of u introduce commutators:

i~∂tR̂u(α) = α̇R̂u(α)Ŝu + φ̇
[
Sz, R̂u(α)

]
+ θ̇

(
Rz(φ)

[
Ŝy, R̂y(θ)R̂z(α)R̂y(−θ)

]
Rz(−φ)

)
i~∂tR̂u(α) = α̇R̂u(α)Ŝu + φ̇

[
Sz, R̂u(α)

]
+ θ̇

[
Sy, R̂u(α)

]
− θ̇

[
Ŝy, Rz(φ)

]
R̂y(θ)R̂z(α)R̂y(−θ)Rz(−φ)

− θ̇Rz(φ)R̂y(θ)R̂z(α)R̂y(−θ)
[
Ŝy, Rz(−φ)

]
i~∂tR̂u(α) = α̇R̂u(α)Ŝu + φ̇

[
Sz, R̂u(α)

]
+ θ̇

[
Sy, R̂u(α)

]
+ θ̇(cosφ− 1)

[
Ŝy, R̂u(α)

]
− θ̇ sinφ

[
Ŝx, R̂u(α)

]
i~∂tR̂u(α) = α̇R̂u(α)Ŝu + φ̇

[
Sz, R̂u(α)

]
+ θ̇

[
cosφŜy − sinφŜx, R̂u(α)

]
.

Using the (u,uθ,uφ) basis at time t, we recognize Ŝuφ in the last commutator, and we

decompose Ŝz in this basis, remembering that Ŝu commutes with R̂u(α):

i~∂tR̂u(α) = α̇R̂u(α)Ŝu + θ̇
[
Ŝuφ , R̂u(α)

]
− φ̇ sin θ

[
Suθ , R̂u(α)

]
. (26)
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We will use this expression, which we recast under the form:

i~R̂†u(α)∂tR̂u(α) = α̇Ŝu + (1− cosα)
[
−θ̇Ŝuφ + φ̇ sin θŜuθ

]
+ sinα

[
φ̇ sin θŜuφ + θ̇Ŝuθ

]
.

(27)
The important message is that, if the direction u around which the rotation is per-

formed varies with time, the time derivative of the rotation operator now involves also
spin projections along directions orthogonal to u.

2 Spin in a static magnetic field

2.1 Magnetic interaction

The interaction between a spin1 Ŝ and a static magnetic field B0 writes

Ĥ = −γŜ ·B0, (28)

where γ = −gSµB
~

is the gyromagnetic ratio, gS is the Landé factor and µB is the Bohr

magneton.
The eigenstates of Ĥ are the states |m〉u, eigenstates of Ŝ · u, where B0 = B0u. If the

z axis is chosen along B0, these states are |m〉z. The corresponding eigenenergies are

Em = mgSµBB0. (29)

2.2 Position dependent magnetic fields. Magnetic traps

If the magnetic field amplitude and direction depends on position, we must consider the
total hamiltonian, including the external degrees of freedom of an atom of mass M :

Ĥ =
P̂2

2M
+
gsµB
~

Ŝ ·B0(R̂).

We could find the spin eigenstate at each fixed position r = 〈R̂〉. If the magnetic field di-
rection is space dependent, the quantization axis now changes as the atom moves. In a first
approach, we can then just identify the internal energy in state |m〉u(r) with mgSµBB0(r).
The Larmor frequency ω0(r) = gSµBB0(r)/~ depends on position. Such a position de-
pendent magnetic field is used to create a magnetic potential to trap atoms in magnetic
traps. The Zeeman states such that mgS > 0, called the low-field seekers, are trapped to
a minimum of the modulus of the magnetic field.

However, as the position operator R̂ and the momentum operator P̂ do not commute,
the spin eigenstate at a given position is coupled to other spin states. This effect is known
as Majorana spin flips, from the italian physicist Ettore Majorana [6].

2.3 Majorana spin flips

In order to understand more clearly this effect, let us introduce explicitly the transfor-
mation which diagonalizes the magnetic interaction at each point. This transformation

1Again, S can be a total spin F , in the limit of weak magnetic fields.
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brings the vector u directing the magnetic field onto z, it is a rotation. There are several
possible choices for this rotation, but we can choose the rotation by an angle π around
the direction u′ with bisects (ez,u).

u′ = sin
θ

2
cosφ ex + sin

θ

2
sinφ ey + cos

θ

2
ez.

q

f

z

y

x

u'ez

u
q/2

uq

uf

Figure 1: Orientation of the direction of the magnetic field u, and vector u′ around which
a π rotation transforms ez into u and vice versa.

Note that u′φ = uφ Eq.(24), and

u′θ = cos
θ

2
cosφ ex + cos

θ

2
sinφ ey − sin

θ

2
ez.

We have then
Ŝz = R̂†u′(π)ŜuR̂u′(π).

The loss rate due to Majorana transition in a Ioffe Pritchard magnetic trap was calcu-
lated by Sukumar and Brinks [4,7]. Their approach, which is very general and also holds
for unitary transformations other than rotations, is the following: we know the unitary
transformation U(r) = R̂u′(π) which at each point r transforms the magnetic interaction
into a pure Ŝz operator:

U †(R̂)
gsµB
~

Ŝ ·B0(R̂)U(R̂) =
gsµBB0(R̂)

~
Ŝz.

The transform of the full hamiltonian Ĥ = P̂2

2M + gsµB
~ Ŝ ·B0(R̂) is U †(R̂)ĤU(R̂) and also

contains the transform of the kinetic energy T = P̂2

2M :

T ′ = U †(R̂)TU(R̂) = T +
[
U †(R̂)TU(R̂)− T

]
= T + ∆T.

The final transform is thus

U †(R̂)ĤU(R̂) = T +
gsµBB0(R̂)

~
Ŝz + ∆T.
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If we neglect the term ∆T , we assume that the spin follows adiabatically the local di-
rection of the magnetic field, and is in the state |m〉u(r). This is known as the adiabatic
approximation, and is valid if 〈∆T 〉 � gSµBB0(r).

Let us examine the transform of P̂:

P̂′ = U †(R̂)P̂U(R̂) = P̂− i~U †(R̂)
[
∇U(R̂)

]
= P̂ + Â.

From the same approach (27) we used for time derivative, we can calculate the gradient
of the rotation operator U , with angles α = π, θ/2 and φ. We find

Â = −i~U †(R̂)
[
∇U(R̂)

]
= ∇θŜu′

φ
− 2∇φ sin

θ

2
Ŝu′

θ
.

The transitions between spin states induced by Â are indeed due to the way the field
rotates when the atoms move. The transformed kinetic energy is

T ′ =
P̂′2

2M
=

1

2M

(
P̂ + Â

)2
= T +

1

2M

(
P̂ · Â + Â · P̂

)
+

Â2

2M
.

Then

∆T =
1

2M

(
P̂ · Â + Â · P̂

)
+

Â2

2M
= Â · P̂

M
− i~(∇ · Â) +

Â2

2M
.

∆T is a small correction typically if Â · P̂/M is a small correction to the energy, of
order ~ω0(r). Classically, this gives

|v ·∇θ| =
∣∣∣∣dθdt
∣∣∣∣� ω0(r). (30)

The magnetic field direction must change slowly as the atom moves.
Brinks and Sukumar evaluated the loss rate from this coupling outside |m〉z to an

untrapped plane wave state with a Fermi golden rule, in the case of a Ioffe-Pritchard
trap.2 If the initial and the final external states are labelled respectively |ϕi,mz〉 and
|ϕf , 0〉, the loss rate to a plane wave state is

ΓMaj =
2π

~
|〈ϕf , 0|∆T |ϕi,mz〉|2 ρf (mz~ω0) ,

where ρf is the density of states in the final plane wave state.

The coupling term matrix element can be deduced from the knowledge of Â, which
is calculated from the spatial dependence of the magnetic field. A Ioffe-Pritchard trap is
characterized by a magnetic gradient b′, corresponding to a Zeeman shift gradient α =
|gS |µBb′/~, and a Larmor frequency at the trap bottom ω0 = |gS |µBB0/~. The magnetic
field close to the trap bottom reads

B0(r) = B0 ez + b′(x ex − y ey).

We have neglected the slow longitudinal dependence on z, which will not be the major
source of Majorana transitions. I let the calculation of the matrix element as a (lengthy)
exercise.

2We chose an even S, so that the final state is mz = 0 and the external state is a plane wave.
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For a S = 1 spin, where a single spin flip results in a loss, the result is

ΓMaj = πωosc e
− 2ω0
ωosc (31)

where the oscillation frequency in the trap is ωosc = α
√

~/(Mω0). The coefficient in the
exponential scales as

2ω0

ωosc
∝ ω

3/2
0

α
. (32)

We will see that this also gives the loss rate from an adiabatic potential due to Landau-
Zener losses.

3 Spin in a radio-frequency field

In this section, we limit ourselves to a homogeneous, static magnetic field B = B0ez.

3.1 Effect of an rf field

We now introduce a magnetic field oscillating at a radio-frequency ω on the order of the
Larmor frequency ω0 = |γ|B0. In this section, we describe the rf by a classical magnetic
field. In a first, quick, approach, let us consider a homogeneous, linearly polarized rf field
along the direction ex orthogonal to the static field, also called σ-polarization:

B1(t) = B1 cos(ωt) ex. (33)

The origin of time is chosen arbitrarily to cancel the phase in the cosine. The coupling of
this oscillatory field with the spin is again magnetic coupling:

V̂rf = −γŜ · [B1 cos(ωt) ex] =
gSµBB1

~
cosωt Ŝx. (34)

Let us introduce the Rabi frequency

Ω =
|gS |µBB1

2~
. (35)

The total spin hamiltonian, including the effect of both fields, static and oscillating, reads:

Ĥ = εω0Ŝz + ε2Ω cosωt Ŝx. (36)

Here, ε = ±1 is the sign of the Landé factor gS .
Using the Ŝ± operators, this can be written as

Ĥ = εω0Ŝz + ε
Ω

2

[
e−iωt Ŝ+ + eiωt Ŝ− + e−iωt Ŝ− + eiωtŜ+

]
.

The first term is responsible for a spin precession around the z axis at frequency ω0,
a in direction determined by ε. The other terms couple different |m〉z states and induce
transitions. These transitions will be resonant for ω = ω0. To emphasize this point, let us
write the hamiltonian in the basis rotating at εω around z: we introduce the state |ψ′〉 such
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that, if |ψ〉 satisfies the time-dependent Schrödinger equation with Ĥ, |ψ〉 = R̂z(εωt)|ψ′〉.
We write the Schrödinger equation for |ψ〉:

i~∂t|ψ〉 = i~
[
∂tR̂

]
|ψ′〉+ R̂

[
i~∂t|ψ′〉

]
= Ĥ|ψ〉 = ĤR̂|ψ′〉.

i~∂t|ψ′〉 = −i~R̂†
[
∂tR̂

]
|ψ′〉+ R̂†ĤR̂|ψ′〉.

|ψ′〉 is thus governed by an effective hamiltonian

Ĥeff = −i~R̂†
[
∂tR̂

]
+ R̂†ĤR̂. (37)

The value of the first term is given by Eq.(27): −εωŜz. The second is simply the
rotated hamiltonian. Introducing the detuning δ = ω − ω0, we get

Ĥeff = −εδŜz + ε
Ω

2

[
ei(ε−1)ωt Ŝ+ + e−i(ε−1)ωt Ŝ− + e−(ε+1)iωt Ŝ− + ei(ε+1)ωtŜ+

]
. (38)

Depending on the sign of ε, either the two first terms (ε = 1) or the two last terms
(ε = −1) in the bracket become static. On the other hand, the two other terms evolve at
high frequency ±2ω.

3.2 Rotating wave approximation

We now proceed to an important approximation, called the rotating wave approximation
or RWA, which consists in neglecting the effect of the fast oscillatory terms at ω in front
of the static terms, which will lead to an evolution with a time scale of order

√
δ2 + Ω2.

This is valid if
√
δ2 + Ω2 � ω. We point out however that for radiofrequency fields, where

ω/2π in the experiments is typically between 100 kHz and 10 MHz, it is not always true
that Ω� ω. We will discuss the beyond RWA case in Lecture 3. We will see in section 4
that the neglected terms describe non resonant processes between different manifolds of
the dressed atom.

If we apply RWA, the effective hamiltonian simplifies into

Ĥeff = −εδŜz + ε
Ω

2

[
Ŝ+ + Ŝ−

]
= −εδŜz + εΩŜx =

√
δ2 + Ω2 Ŝ · u. (39)

The hamiltonian (39) corresponds to the interaction of a spin with a static effective mag-
netic field

Beff =
~
√
δ2 + Ω2

gSµB
u, (40)

where the new quantization axis for the rotating spin is

u = cos θez + sin θex cos θ =
−εδ√
δ2 + Ω2

sin θ =
εΩ√
δ2 + Ω2

. (41)

The eigenstates of Ĥeff are |ψ′〉 = R̂y(θ)|m〉z, with eigenenergies m~
√
δ2 + Ω2.
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Frequency sweep and spin inversion: When |δ| is very large as compared to Ω,
the angle θ is 0 or π, depending on the sign of δ, which means that u is simply ±ez.
The eigenstates in the presence of the rf field are |m〉z, like without rf. However, the
correspondence between the |m〉u and the |m〉z states is inverted as the sign of δ is reversed.

This can be used to flip a spin adiabatically with a frequency sweep. Let us consider
for example the case ε > 0, and suppose that an atom is initially prepared in the eigenstate
|m〉z of the hamiltonian in the static field only. We then ramp up a rf field for Ω = 0
to Ω = Ω1 in a sufficiently long time, at a frequency ω such that δ < 0 and |δ| � Ω1.
The angle θ corresponding to the eigenstate in the presence of a rf field is initially 0, and
reaches θ ' Ω0/|δ| at the end of the process. The spin in thus in the state |m〉u where u is
almost ez. The next step is to sweep ω from δ < 0 to δ > 0 and δ � Ω1. In this process,
θ increases from almost 0 to nearly π. Switching off Ω slowly gives θ = π, and the final
state is | −m〉z. The same process also works to invert the spin in the case where ε < 0,
except that in the case, the spin follows the state | −m〉u.
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Figure 2: Spin inversion with a sweep of the rf frequency. Left: Evolution of the rf coupling
Ω (red line) and the detuning δ (blue line) with time. Right: Corresponding evolution of
the eigenenergies in the case of a S = 1 spin at the central period where the detuning is
varied (upper curve, lower curve and zero line), compared to the uncoupled states |m〉z,
straight dashed lines. Following a coupled state allows to flip the spin from +m, left, to
−m, right, or vice versa.

This spin flip procedure is efficient if the spin follows adiabatically the eigenstate
|m〉u = R̂y(θ)|m〉z at any time. This is the case if its variations with time, which provoke
a coupling term to the other spin states, are small as compared to the frequency splitting
between eigenstates. This gives the condition:

|θ̇| �
√
δ2 + Ω2, or

∣∣∣δ̇Ω− δΩ̇∣∣∣� (
δ2 + Ω2

)3/2
. (42)

This is the adiabaticity condition. It is reminiscent of Eq.(30), which expressed the same
condition for the spin following of a static field. For the procedure described above, we
just have to ensure |Ω̇| � δ2 for the on and off switching of the rf power, and |δ̇| � Ω2

1 for
the frequency sweep, to fulfill the condition (42).
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3.3 Generalization to any polarization

The rf field can be written very generally as

B1 = Bx cos(ωt+ φx) ex +By cos(ωt+ φy) ey +Bz cos(ωt+ φz) ez (43)

z being the direction of the static magnetic field. In principle, the amplitudes Bi and
phases φi could depend on position. To start with, we consider a homogeneous rf field.

We now use a complex notation for the field, such that

B1 =
Bx
2
e−iφxe−iεωt ex +

By
2
e−iφye−iεωt ey +

Bz
2
e−iφze−iεωt ez + c.c. (44)

The z component of the rf field, aligned along the quantization axis, doesn’t couple
the |m〉z state. We will discard this term3 from now on.

We introduce the spherical basis (e+, e−, ez):

e+ = − 1√
2

(ex + iey) e− =
1√
2

(ex − iey) . (45)

The complex projections B+ and B− onto this basis are given by the scalar product e∗± ·B1:

B+ =
1

2
√

2

(
−Bx e−iφx + iBye

−iφy
)

B− =
1

2
√

2

(
Bx e

−iφx + iBye
−iφy

)
.

Because of the ε sign in the exponentials, B+ is the σ+ component of the rf field for ε = 1,
and the σ− component for ε = −1. We see that Ŝ ·e+ = − 1√

2
Ŝ+ and Ŝ ·e− = 1√

2
Ŝ−. If we

define the complex coupling amplitudes Ω± = ∓
√

2gsµBB±, the total spin hamiltonian
reads:

Ĥ = εω0Ŝz +

[
Ω+

2
e−iεωt Ŝ+ +

Ω−
2
e−iεωt Ŝ− + h.c.

]
. (46)

Let us write Ω+ = |Ω+|e−iφ+ . After a rotation around z of angle φ+ + εωt, and
application of the rotating wave approximation, the effective hamiltonian is

Ĥeff = −εδŜz +

[
|Ω+|

2
Ŝ+ + h.c.

]
= −εδŜz + |Ω+|Ŝx. (47)

The eigenenergies are m~
√
δ2 + |Ω+|2. The eigenstates are again deduced from |m〉z by a

rotation of θ around y, where

cos θ =
−εδ√

δ2 + |Ω+|2
sin θ =

|Ω+|√
δ2 + |Ω+|2

. (48)

It is clear from the form (47) that the relevant coupling is only the σ+ polarized part
of the rf field for ε = 1 (the σ− component for ε = −1). It is related to the x and y
projections of the rf field through

|Ω+| =
|gS |µB

2~

√
B2
x +B2

y + 2BxBy sin(φx − φy). (49)

3In fact, misalignment effect of the rf field, where there is a non zero component along the static field,
do have an effect, see [8]. We will discuss this if time allows.
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For linearly polarized field, with By = 0, we recover the amplitude of Eq.(35). The
coupling is maximum for purely circular polarization σε, which we obtain when φx−φy =
π/2 and Bx = By. The amplitude is then twice as large as in the case of the linear
field along x. For a linear transverse polarization with φx = φy and Bx = By = B1, the
coupling is smaller by

√
2 than for the circular case. Finally, the coupling totally vanishes

in the case of a σ−ε polarization (σ− for ε = 1, and vice versa).
We must emphasize that all this reasoning has been done with the direction of the

static magnetic field for the quantization axis. If the direction of this field changes in
space, the relevant amplitude is the σε component along the new, local direction of the
magnetic field.

3.4 Misalignment effects of the rf polarization

We said in the beginning of this section that the z component of the rf field doesn’t couple
the spin states. In fact, this is not strictly true. When the rf field is has some component
along the axis z of the magnetic field, its effect is to modify the Landé factor, by a factor
J0(Ωz/ω) [9]. It can also lead to transitions at submultiples of the Larmor frequency.

Suppose the hamiltonian is a static field along z and a rf field with a z projection
writes:

Ĥ = (ω0 + Ωz sinωt) Ŝz +

{
Ω+

2
e−iωtŜ+ + h.c.

}
.

The rf field is circularly polarized, but also has a linear component of its polarization along
z. What is the effect of this Ωz term?

To understand is, we will look for the solution of a spin rotated throughR = Rz(
Ωz
ω cosωt).

This rotation is chosen to cancel the Ωz term of the initial hamiltonian. We get:

Ĥ ′ = R†ĤR− Ωz sinωt Ŝz = ω0Ŝz +

{
Ω+

2
e−iωtei

Ωz
ω

cosωtŜ+ + h.c.

}
.

The exponential of the cosine may be expanded in terms of Bessel functions of the first
kind. This gives:

Ĥ ′ = ω0Ŝz +

{
Ω+

2

+∞∑
n=−∞

inJn

(
Ωz

ω

)
e−i(1+n)ωtŜ+ + h.c.

}
.

Rotations around z by angles (n + 1)ωt will each time make one term in the sum
stationary. This means that resonances appear, at frequencies ω such that (n+ 1)ω = ω0,
with a coupling amplitude given by the Bessel function:

coupling Ω+Jn

(
Ωz

ω

)
at frequency ω =

ω0

n+ 1
.

The n = 0 case is the usual, expected transition. However, the rf coupling is modified and
is now Ω+J0

(
Ωz
ω

)
. We recover a coupling Ω+ when Ωz vanishes. Everything happens as if

the Landé factor had been modified [9] by a factor J0

(
Ωz
ω

)
, smaller than one, which can

even change sign if Ωz is comparable with ω.
The cases n > 0 correspond to resonances at submultiples of the Larmor frequencies [8],

with smaller amplitudes Ω+Jn
(

Ωz
ω

)
. For Ωz � ω, the coupling amplitude scales as

(
Ωz
ω

)n
13



and is very small. For practical purposes in rf-dressed adiabatic potentials, the rf source
often has harmonics of the frequency ω due to non linear amplification. This misalignment
effect is another reason for avoiding to have atoms at a position when the Larmor frequency
is close to 2ω. For the rest of the lecture, we will ignore the effect of the Ωz term, and
take it equal to zero.

4 The dressed state picture

4.1 Field quantization

Although the rf field is classical in the sense that the mean photon number 〈N〉 interacting
with the atoms is very large, and its relative fluctuations ∆N/〈N〉 negligible, it gives a
deeper insight in the coupling to use a quantized description for the rf field. This will
make much clearer the interpretation of rf spectroscopy or the effect of strong rf coupling,
beyond RWA. We will chose ε = +1 for simplicity, the other choice simply changing the
role of the two polarizations.

We start from the expression of the classical field in the spherical basis:

B1 = B+ e
−iωte+ +B− e

−iωte− + c.c.

The quantum rf magnetic field can be described as follows:

B̂1 = (b+ e+ + b− e−) a+ h.c. (50)

where b± = B±/
√
〈N〉. Defining the Rabi coupling as Ω± = ∓

√
2gsµBB±, and the one-

photon Rabi coupling as Ω
(0)
± = ∓

√
2gsµBb± = Ω±/

√
〈N〉, the total hamiltonian for the

spin and the field reads:4

Ĥ = ω0Ŝz + ~ωa†a+

[
Ω+

2
√
〈N〉

(
a Ŝ+ + a† Ŝ−

)
+

Ω−

2
√
〈N〉

(
a Ŝ− + a† Ŝ+

)]
. (51)

4.2 Uncoupled states

In the absence of coupling (for Ω± = 0), the eigenstates of the { atom + photons } system
Ĥ0 = ω0Ŝz + ~ωa†a are |m,N〉 = |m〉z|N〉, where |m〉z is an eigenstate of Ŝz and |N〉 an
eigenstate of a†a, with respective eigenvalues m~ and N :

Ĥ0|m,N〉 = E0
m,N |m,N〉, Em,N = m~ω0 +N~ω.

Let us write this energy in terms of the detuning δ = ω − ω0:

Em,N = −m~δ + (N +m)~ω.

From this expression, we see that the states in the manifold EN = {|m,N −m〉,m = −S . . . S}
have an energy

Em,N−m = −m~δ +N~ω.
For a rf frequency ω close to ω0, that is if δ � ω, the energy splitting inside a manifold,

of order ~δ, is very small as compared to the energy splitting between different manifolds,
which is ~ω, see Fig. 3.

4We set the origin of energy so as to include the zero photon energy ~ω/2.
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Figure 3: The unperturbed atom + field states can be grouped into manifolds of 2S + 1
states with a small energy difference ~δ compared to the energy spacing between manifolds
~ω. Depending on the sign of δ, either the state connected to |+ S〉z or to | − S〉z has a
larger energy. On resonance (δ = 0), all the states are degenerate. The EN manifold with
mean energy N~ω and δ > 0 is enlightened.

4.3 Effect of the rf coupling

There are four coupling terms, illustrated on Fig. 4. The two first terms, proportional to
Ω+, act inside a given EN manifold:

〈m± 1, N −m∓ 1

∣∣∣∣∣ Ω+

2
√
〈N〉

(
a Ŝ+ + a† Ŝ−

)∣∣∣∣∣m,N −m〉 ' Ω+

2

√
S(S + 1)−m(m± 1).

As 〈N〉 � 1, we have neglected the difference between N −m and 〈N〉 when applying a
and a†.

The two last terms, proportional to Ω−, couple states of the EN manifold to states of
the EN±2 manifold:

〈m± 1, N −m± 1

∣∣∣∣∣ Ω−

2
√
〈N〉

(
a† Ŝ+ + a Ŝ−

)∣∣∣∣∣m,N −m〉 ' Ω−
2

√
S(S + 1)−m(m± 1).

An estimation of the effect of this two terms on the energy with perturbation theory with
lead to a shift of order ~|Ω+|2/δ for the Ω+ terms, and ~|Ω−|2/(ω0 + ω) for the Ω− term.
The rotating wave approximation, which applies if |δ|, |Ω±| � ω, consists in neglecting
the effect of the Ω− terms, and to concentrate on a given multiplicity.

4.4 Dressed states in the rotating wave approximation

Within the rotating wave approximation, we can just find the eigenstates in a given mani-
fold. The result is given by using generalized spin rotation, with the angle given at Eq.(48),
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Figure 4: Coupling terms between unperturbed states. The Ω+ terms couple states inside
a given EN manifold, whereas the Ω− terms couple states from different EN manifolds.

changing the photon number accordingly to stay in the EN manifold. The eigenstates are
the dressed states |m′, N〉 with energies

E′m′ = m′~
√
δ2 + |Ω+|2.

The spin states are dressed by the rf field, in such a way that the eigenstates are now
combining different spin and field states, and cannot be written as a product spin⊗field.
The dressed states are connected to the uncoupled states for |δ| � 1. The effect of the
coupling is to repel the states inside the multiplicity, the frequency splitting going from
|δ| to

√
δ2 + |Ω+|2.

References

[1] C. Cohen-Tannoudji and D. Guéry-Odelin. Advances in atomic physics: an overview.
World Scientific, 2011.

16



[2] O. Zobay and B.M. Garraway. Atom trapping and two-dimensional Bose-Einstein
condensates in field-induced adiabatic potentials. Phys. Rev. A, 69:023605, 1–15, 2004.

[3] I. Lesanovsky, T. Schumm, S. Hofferberth, L. M. Andersson, P. Krüger, J. Schmied-
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