Low-dimensional Bose gases Part 1: BEC and interactions

Hélène Perrin

Laboratoire de physique des lasers, CNRS-Université Paris Nord

Photonic, Atomic and Solid State Quantum Systems Vienna, 2009

Introduction

The role of dimensionality in physics

Physics is qualitatively changed when dimension is reduced. Examples include:

- in 1D: absence of thermalisation of a 1D gas, 'fermionization' of an interacting Bose gas, renormalization of the interactions...
- in 2D: (fractional) quantum Hall effect, Kosterlitz-Thouless transition, renormalization of the interactions...

Introduction

Example in 2D: the Quantum Hall Effect

- 2D electron gas at the interface of a semiconductor heterojunction
- ullet longitudinal current I_x , high perpendicular magnetic field B_z
- ullet measure the transverse voltage $V_H=V_y$

- plateaux of Hall resistance $R = \frac{V_y}{l_x} = \frac{h}{ie^2}, \quad i \in \mathbb{N}^*$
- longitudinal resistance $R_x = \frac{V_x}{l_x} = 0$

Experimental realization of low-D gases: strongly confine 3-D directions $(k_BT, \mu \ll \hbar\omega_\perp)$

 $k_BT,\mu\ll\hbar\omega_\perp$

Experimental realization of low-D gases: strongly confine 3-D directions $(k_BT, \mu \ll \hbar\omega_\perp)$

ullet optical lattices in 3-D directions

Production of low-D gases

Experimental realization of low-D gases: strongly confine 3-D directions $(k_BT, \mu \ll \hbar\omega_\perp)$

ullet optical lattices in 3-D directions

Experimental realization of low-D gases: strongly confine 3-D directions $(k_BT, \mu \ll \hbar\omega_\perp)$

- optical lattices in 3 D directions
- 2D optical surface traps / rf-dressed magnetic traps

Innsbruck

Introduction Production of low-D gases

Experimental realization of low-D gases: strongly confine 3-D directions $(k_BT, \mu \ll \hbar\omega_\perp)$

- optical lattices in 3 D directions
- 2D optical surface traps / rf-dressed magnetic traps

Villetaneuse

Introduction Production of low-D gases

Experimental realization of low-D gases: strongly confine 3-D directions $(k_BT, \mu \ll \hbar\omega_\perp)$

- optical lattices in 3 D directions
- 2D optical surface traps / rf-dressed magnetic traps
- anisotropic magnetic traps on chips

Many groups... including Vienna!

Introduction

General references:

- Bose-Einstein Condensation, Lev Pitaevskii and Sandro Stringari, Oxford (2003)
- Quantum Gases in Low Dimensions, edited by L. Pricoupenko, H. Perrin and M. Olshanii, J. Phys IV 116 (2004)
 Les Houches lectures by Shlyapnikov, Castin, Olshanii, Stringari, Cirac and Douçot.
- Many body physics with ultra cold gases, I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)
- ... and (many) references therein.

Outline

OUTLINE OF THE LECTURE

BEC of an ideal gas in reduced dimensions

BEC of an ideal gas in reduced dimensions

non interacting Bose gas, non degenerate ground state of energy ε_0 semi-classical approach (valid if $k_BT\gg\Delta\varepsilon\sim\hbar\omega_0$ or $\hbar^2/2ML^2$) Bose-Einstein distribution in the grand canonical ensemble:

$$n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1} \ge 0$$

non interacting Bose gas, non degenerate ground state of energy ε_0 semi-classical approach (valid if $k_B T \gg \Delta \varepsilon \sim \hbar \omega_0$ or $\hbar^2/2ML^2$) Bose-Einstein distribution in the grand canonical ensemble:

$$n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1} \ge 0$$

chemical potential $\mu < \varepsilon_0$ determined by the normalisation condition:

$$N = N_0 + N' = \int \rho(\varepsilon) n(\varepsilon) d\varepsilon$$

non interacting Bose gas, non degenerate ground state of energy ε_0 semi-classical approach (valid if $k_B T \gg \Delta \varepsilon \sim \hbar \omega_0$ or $\hbar^2/2ML^2$) Bose-Einstein distribution in the grand canonical ensemble:

$$n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1} \ge 0$$

chemical potential $\mu < \varepsilon_0$ determined by the normalisation condition:

$$N = N_0 + N' = \int \rho(\varepsilon) n(\varepsilon) d\varepsilon$$

 $\rho(\varepsilon)$: density of states, depends on the system (trap, free bosons...) $N_0 = n(\varepsilon_0)$: mean number of particles in the ground state N': mean number of particles in the excited states

The occupancy $n'(\varepsilon)$ of each excited level is bounded from above using $\mu < \varepsilon_0$:

$$n'(\varepsilon) < \frac{1}{\exp(\beta(\varepsilon - \varepsilon_0)) - 1} = \sum_{n=1}^{\infty} e^{-n\beta(\varepsilon - \varepsilon_0)}.$$

The occupancy $n'(\varepsilon)$ of each excited level is bounded from above using $\mu < \varepsilon_0$:

$$n'(\varepsilon) < \frac{1}{\exp(\beta(\varepsilon - \varepsilon_0)) - 1} = \sum_{n=1}^{\infty} e^{-n\beta(\varepsilon - \varepsilon_0)}.$$

Then $N' = \int \rho(\varepsilon) n'(\varepsilon) d\varepsilon < N_C(T)$, where

$$N_C(T) = \int \rho(\varepsilon) \sum_{n=1}^{\infty} e^{-n\beta(\varepsilon - \varepsilon_0)} d\varepsilon = \sum_{n=1}^{\infty} e^{n\beta\varepsilon_0} \int \rho(\varepsilon) e^{-n\beta\varepsilon} d\varepsilon.$$

The occupancy $n'(\varepsilon)$ of each excited level is bounded from above using $\mu < \varepsilon_0$:

$$n'(\varepsilon) < \frac{1}{\exp(\beta(\varepsilon - \varepsilon_0)) - 1} = \sum_{n=1}^{\infty} e^{-n\beta(\varepsilon - \varepsilon_0)}.$$

Then $N' = \int \rho(\varepsilon) n'(\varepsilon) d\varepsilon < N_C(T)$, where

$$N_C(T) = \int \rho(\varepsilon) \sum_{n=1}^{\infty} e^{-n\beta(\varepsilon - \varepsilon_0)} d\varepsilon = \sum_{n=1}^{\infty} e^{n\beta\varepsilon_0} \int \rho(\varepsilon) e^{-n\beta\varepsilon} d\varepsilon.$$

If this integral is finite, $N_0 > N - N_C(T)$.

 T_C such that $N_C(T_C) = N$. $N_C(T)$ increases with T.

$$T < T_C \Longrightarrow N_0 > 0$$
 Bose-Einstein condensation

The occupancy $n'(\varepsilon)$ of each excited level is bounded from above using $\mu < \varepsilon_0$:

$$n'(\varepsilon) < \frac{1}{\exp(\beta(\varepsilon - \varepsilon_0)) - 1} = \sum_{n=1}^{\infty} e^{-n\beta(\varepsilon - \varepsilon_0)}.$$

Then $N' = \int \rho(\varepsilon) n'(\varepsilon) d\varepsilon < N_C(T)$, where

$$N_C(T) = \int \rho(\varepsilon) \sum_{n=1}^{\infty} e^{-n\beta(\varepsilon - \varepsilon_0)} d\varepsilon = \sum_{n=1}^{\infty} e^{n\beta\varepsilon_0} \int \rho(\varepsilon) e^{-n\beta\varepsilon} d\varepsilon.$$

If this integral is finite, $N_0 > N - N_C(T)$.

 T_C such that $N_C(T_C) = N$. $N_C(T)$ increases with T.

 $T < T_C \Longrightarrow N_0 > 0$ Bose-Einstein condensation

Depending on $\rho(\varepsilon)$, N_C is finite or not...

Role of the density of states

An important particular case: power law density of state $\rho(\varepsilon) \propto (\varepsilon - \varepsilon_0)^k$ with $\varepsilon > \varepsilon_0$

$$N_C(T) \propto \sum_{n=1}^{\infty} \int_0^{\infty} \varepsilon^k e^{-n\beta\varepsilon} d\varepsilon \quad \propto \quad (k_B T)^{k+1} \sum_{n=1}^{\infty} \frac{1}{n^{k+1}}$$

Role of the density of states

An important particular case: power law density of state $\rho(\varepsilon) \propto (\varepsilon - \varepsilon_0)^k$ with $\varepsilon > \varepsilon_0$

$$N_C(T) \propto \sum_{n=1}^{\infty} \int_0^{\infty} \varepsilon^k e^{-n\beta\varepsilon} d\varepsilon \quad \propto \quad (k_B T)^{k+1} \sum_{n=1}^{\infty} \frac{1}{n^{k+1}}$$

Converges for k > 0.

Fraction of condensed particles:

$$N_C(T_C) = N \implies \frac{N_0}{N} = 1 - \left(\frac{T}{T_C}\right)^{k+1}$$

A slightly different approach

- at fixed T, calculate $N'(\mu) = \int \rho(\varepsilon) n'(\varepsilon) d\varepsilon$
- For $\rho(\varepsilon) \propto (\varepsilon \varepsilon_0)^k$, $N'(z) \propto T^{k+1} g_{k+1}(z)$ as a function of the fugacity $z = e^{\beta(\mu \varepsilon_0)} < 1$.

$$g_{k+1}(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^{k+1}}$$
 polylogarithm or Bose function.

increasing function of z (or μ).

- If N' can take any value for $\mu < \varepsilon_0$ or z < 1, no BEC. For any N, one can find a μ such that $N'(\mu) = N$ and $N_0 \ll N$.
- If $N'(\mu) = N$ has no solution for large enough N, Bose-Einstein condensation.
- Again, $g_{k+1}(1)$ is finite for k < 0.

Example: Bose-Einstein condensation in a 3D box

3D box:
$$\rho(\varepsilon) \propto \sqrt{\varepsilon}, k=\frac{1}{2} \Rightarrow$$
 series $\sim \frac{1}{n^{3/2}}$ converges, $g_{3/2}(1)=2.612$ is finite

$$N'(T,\mu) = \frac{L^3}{\lambda^3} g_{3/2}(e^{\beta\mu})$$

where
$$\lambda = \frac{h}{\sqrt{2\pi M k_B T}}$$

Example: Bose-Einstein condensation in a 3D box

3D box:
$$\rho(\varepsilon) \propto \sqrt{\varepsilon}, k=\frac{1}{2} \Rightarrow$$
 series $\sim \frac{1}{n^{3/2}}$ converges, $g_{3/2}(1)=2.612$ is finite

$$N_C(T) = 2.612 \frac{L^3}{\lambda^3}$$

$$N_C(T) \propto T^{3/2}$$

Saturation of the excited states: T_C given by $\frac{N}{L^3}\lambda^3 = 2.612$

BEC in lower dimensions?

Does BEC also happen in lower dimensions?

• box of dimension *D*:

$$\rho(\varepsilon) \propto \varepsilon^{\frac{D}{2}-1} \implies D > 2$$

BEC possible only for D=3 at finite ${\cal T}$ in thermodynamic limit

BEC in lower dimensions?

Does BEC also happen in lower dimensions?

- box of dimension D: $\rho(\varepsilon) \propto \varepsilon^{\frac{D}{2}-1} \implies D > 2$ BEC possible only for D=3 at finite T in thermodynamic limit
- spherical harmonic trap of dimension D, frequency ω_0 : $\rho(\varepsilon) \propto \varepsilon^{D-1} \implies D > 1$ BEC possible for D=3 and D=2

BEC in lower dimensions?

Does BEC also happen in lower dimensions?

- box of dimension D: $\rho(\varepsilon) \propto \varepsilon^{\frac{D}{2}-1} \implies D > 2$ BEC possible only for D=3 at finite T in thermodynamic limit
- spherical harmonic trap of dimension D, frequency ω_0 : $\rho(\varepsilon) \propto \varepsilon^{D-1} \implies D > 1$ BEC possible for D=3 and D=2

$$k_B T_C \sim N^{\frac{1}{D}} \hbar \omega_0$$
 $\frac{N_0}{N} = 1 - \left(\frac{T}{T_C}\right)^D$

N.B. $T_C \sim T_d$ degeneracy temperature $k_B T_d = N^{\frac{1}{D}} \hbar \omega_0$

1D harmonic trap

Finite size effect: refining the 1D trapped case gap $\Delta \varepsilon = \hbar \omega_0$ to the first excited state

1D harmonic trap

Finite size effect: refining the 1D trapped case gap $\Delta \varepsilon = \hbar \omega_0$ to the first excited state

$$\begin{split} N_C(T) &= \sum_{n=1}^{\infty} \int_{\hbar\omega_0}^{\infty} \rho(\varepsilon) e^{-n\beta\varepsilon} d\varepsilon = \frac{k_B T}{\hbar\omega_0} \sum_{n=1}^{\infty} \frac{e^{-n\beta\hbar\omega_0}}{n} \\ N_C(T) &= -\frac{k_B T}{\hbar\omega_0} \text{Ln} (1 - e^{-\beta\hbar\omega_0}) \simeq \frac{k_B T}{\hbar\omega_0} \text{Ln} \left(\frac{k_B T}{\hbar\omega_0}\right) \\ k_B T_C &\simeq \hbar\omega_0 \frac{N}{\ln N} \end{split}$$

N.B. $T_C \ll T_d$ with $T_d = N\hbar\omega_0$ degeneracy temperature; $\frac{T_C}{T_d} \longrightarrow 0$ in the thermodynamic limit ($\frac{T_C}{T_d} = \cos$ in 2D or 3D)

coherence is described by first order correlation function

$$g^{(1)}(\mathbf{r},\mathbf{r}') = rac{\langle \hat{\psi}^+(\mathbf{r})\hat{\psi}(\mathbf{r}')
angle}{\sqrt{n(\mathbf{r})n(\mathbf{r}')}}$$

Above T_C : Gaussian decay: $g^{(1)}(\delta r) = e^{-\pi \frac{\delta r^2}{\lambda^2}}$ box / trap

coherence is described by first order correlation function

$$g^{(1)}(\mathbf{r},\mathbf{r}') = \frac{\langle \hat{\psi}^+(\mathbf{r})\hat{\psi}(\mathbf{r}') \rangle}{\sqrt{n(\mathbf{r})n(\mathbf{r}')}}$$

Above T_C : Gaussian decay: $g^{(1)}(\delta r) = e^{-\pi \frac{\delta r^2}{\lambda^2}}$ box / trap Below T_C : phase fluctuations are dominant $\hat{\psi}(\mathbf{r}) = \sqrt{n(\mathbf{r})}e^{i\hat{\phi}(\mathbf{r})}$

$$g^{(1)}(\mathbf{r},\mathbf{r}')\simeq\langle e^{i(\hat{\phi}(\mathbf{r})-\hat{\phi}(\mathbf{r}'))}
angle=e^{-rac{1}{2}\langle\delta\hat{\phi}^2
angle}$$

phase fluctuations $\delta\hat{\phi}=\phi({\bf r})-\phi({\bf r}')$ determine the coherence of the Bose gas.

phase fluctuations are increased in reduced dimension. In the limit $\delta r \to \infty$:

• 3D: $\langle \delta \hat{\phi}^2 \rangle \sim \text{cst} \Rightarrow g^{(1)} \sim \frac{N_0}{N}$

long range order

phase fluctuations are increased in reduced dimension. In the limit $\delta r \to \infty$:

phase fluctuations are increased in reduced dimension. In the limit $\delta r \to \infty$:

• 2D: $\langle \delta \hat{\phi}^2 \rangle \sim \ln(\delta r) \Rightarrow g^{(1)} \sim \delta r^{-\frac{1}{n\lambda^2}}$

algebraic decay

phase fluctuations are increased in reduced dimension. In the limit $\delta r \to \infty$:

• 3D:
$$\langle \delta \hat{\phi}^2 \rangle \sim \text{cst} \Rightarrow g^{(1)} \sim \frac{N_0}{N}$$
 long range order

Bloch, Hänsch,
Esslinger (2000)

• $T = 250 \text{ nK}$
• $T = 310 \text{ nK}$
• $T = 290 \text{ nK}$
• $T = 200 \text{ nK}$
• T

- 2D: $\langle \delta \hat{\phi}^2 \rangle \sim \ln(\delta r) \Rightarrow g^{(1)} \sim \delta r^{-\frac{1}{n\lambda^2}}$ algebraic decay
- 1D: $\langle \delta \hat{\phi}^2 \rangle \sim \delta r \Rightarrow g^{(1)} \sim e^{-\frac{\delta r}{\ell_{\phi}}}$

exponential decay

Coherence of the condensate

Evidence for phase fluctuations in a 3D elongated geometry: phase domains of size $\ell_\phi \propto \frac{T_\phi}{T}$

Coherence of the condensate

Evidence for phase fluctuations in a 3D elongated geometry:

phase domains of size $\ell_{\phi} \propto \frac{T_{\phi}}{T}$

Dettmer et al., 2001: phase fluctuations translated into density fluctuations after time-of-flight

Coherence of the condensate

Evidence for phase fluctuations in a 3D elongated geometry:

phase domains of size $\ell_{\phi} \propto \frac{I_{\phi}}{T}$

Dettmer et al., 2001: phase fluctuations translated into density fluctuations after time-of-flight

Taking into account interactions

Interactions in lower dimension

Scattering theory

Rigorous approach: solve the scattering problem in dimension D.

Scattering theory

Rigorous approach: solve the scattering problem in dimension D. Reminder: in 3D, s-wave scattering at low energy \Rightarrow simple dephasing -ka of the wave function

Scattering theory

Rigorous approach: solve the scattering problem in dimension D. Reminder: in 3D, s-wave scattering at low energy \Rightarrow simple dephasing -ka of the wave function

scattering length a contains all relevant scattering information \Rightarrow use an effective contact interaction $g\delta(\mathbf{r})$

$$g_{3D}=rac{4\pi\hbar^2a}{M}$$

- ullet $a o \infty$ if there is a molecular bound state of zero energy
- *a* > 0 and large: last bound state close to dissociation threshold

- $a \to \infty$ if there is a molecular bound state of zero energy
- *a* > 0 and large: last bound state close to dissociation threshold
- a < 0 and large: virtual state above dissociation threshold

- $a \to \infty$ if there is a molecular bound state of zero energy
- a > 0 and large: last bound state close to dissociation threshold
- a < 0 and large: virtual state above dissociation threshold

 At a Feshbach resonance, the scattering length diverges and changes sign when varying B.

Feshbach resonance in sodium Inouye et al. (1998)

- $a \to \infty$ if there is a molecular bound state of zero energy
- a > 0 and large: last bound state close to dissociation threshold
- a < 0 and large: virtual state above dissociation threshold
- At a Feshbach resonance, the scattering length diverges and changes sign when varying B.
- A B ramp from a<0 to a>0 can produce molecules with binding energy $E_b=-\frac{\hbar^2}{Ma^2}.$

Gross-Pitaevskii equation

dilute gas ($na^3 \ll 1$); all particles in the same single particle state; mean field approach; g enters in the interaction term of Gross-Pitaevskii equation for the condensate wave function

$$-\frac{\hbar^2}{2M}\triangle\psi + U(\mathbf{r})\psi + \mathbf{g}|\psi|^2\psi = \mu\psi$$

Gross-Pitaevskii equation

dilute gas $(na^3 \ll 1)$; all particles in the same single particle state; mean field approach; g enters in the interaction term of Gross-Pitaevskii equation for the condensate wave function

$$-\frac{\hbar^2}{2M}\triangle\psi + U(\mathbf{r})\psi + \mathbf{g}|\psi|^2\psi = \mu\psi$$

Thomas Fermi regime if $Na \gg a_{ho}$ or $\mu \gg \hbar \omega$:

$$|\psi|^2 = n(\mathbf{r}) = \frac{\mu - U(\mathbf{r})}{g}$$

in a harmonic trap:

$$\mu \propto (\mathit{Na})^{2/5}$$

$$\mu \propto (\textit{Na})^{2/5}$$
 $R_{\mathsf{TF}} \propto (\textit{Na})^{1/5}$

Gross-Pitaevskii equation

dilute gas ($na^3 \ll 1$); all particles in the same single particle state; mean field approach; g enters in the interaction term of Gross-Pitaevskii equation for the condensate wave function

$$-\frac{\hbar^2}{2M}\triangle\psi + U(\mathbf{r})\psi + \mathbf{g}|\psi|^2\psi = \mu\psi$$

Thomas Fermi regime in a box: uniform n except at the edges, on a size ξ

healing length ξ :

$$\frac{\hbar^2}{2M\xi^2} = \mu$$

$$\xi = \frac{1}{\sqrt{8\pi na}}$$

What about interactions in dimension D?

3-D directions confined to the ground state of an harmonic oscillator ω_{\perp} , to a size $\ell_{\perp}=\sqrt{\hbar/M\omega_{\perp}}$. Implies $\mu_{D}\ll\hbar\omega_{\perp}$.

What about interactions in dimension D?

3-D directions confined to the ground state of an harmonic oscillator ω_{\perp} , to a size $\ell_{\perp}=\sqrt{\hbar/M\omega_{\perp}}$. Implies $\mu_{D}\ll\hbar\omega_{\perp}$.

What about interactions in dimension D?

Two situations:

- $\ell_{\perp} > a$ (thermo)dynamics in dimension D, collisions still in 3D
- $\ell_{\perp} < a$ (thermo)dynamics and collisions in dimension D

What about interactions in dimension D?

Two situations:

- $\ell_{\perp} > a$ (thermo)dynamics in dimension D, collisions still in 3D
- $\ell_{\perp} < a$ (thermo)dynamics and collisions in dimension D

Typically, $\ell_{\perp} >$ 30 nm, $\it a \sim {\rm a~few~nm} \Rightarrow \ell_{\perp} > \it a...$

... unless a Feshbach resonance is used

case $\ell_{\perp} > a$: write $\psi(\mathbf{r}) = \psi_D(\mathbf{r}_D)\phi_{\perp}(\mathbf{r}_{\perp})$ and look for a GPE in dimension D:

$$-\frac{\hbar^2}{2M}\triangle_D\psi_D + U(\mathbf{r}_D)\psi_D + \mathbf{g}_D|\psi_D|^2\psi_D = \mu_D\psi_D$$

case $\ell_{\perp} > a$: write $\psi(\mathbf{r}) = \psi_D(\mathbf{r}_D)\phi_{\perp}(\mathbf{r}_{\perp})$ and look for a GPE in dimension D:

$$-\frac{\hbar^2}{2M}\triangle_D\psi_D + U(\mathbf{r}_D)\psi_D + \mathbf{g}_D|\psi_D|^2\psi_D = \mu_D\psi_D$$

deduce g_D from averaging the interaction over the transverse distribution $n_{\perp}(\mathbf{r}_{\perp}) = |\phi_{\perp}(\mathbf{r}_{\perp})|^2$

$$g_D |\psi_D(\mathbf{r}_D)|^2 = \int g |\psi|^2 |\phi_\perp(\mathbf{r}_\perp)|^2 d\mathbf{r}_\perp = g |\psi_D(\mathbf{r}_D)|^2 \int |\phi_\perp(\mathbf{r}_\perp)|^4 d\mathbf{r}_\perp$$

$$g_D = \frac{g}{(\sqrt{2\pi}\ell_\perp)^{3-D}}$$

case $\ell_{\perp} > a$: write $\psi(\mathbf{r}) = \psi_D(\mathbf{r}_D)\phi_{\perp}(\mathbf{r}_{\perp})$ and look for a GPE in dimension D:

$$-\frac{\hbar^2}{2M}\triangle_D\psi_D + U(\mathbf{r}_D)\psi_D + \mathbf{g}_D|\psi_D|^2\psi_D = \mu_D\psi_D$$

deduce g_D from averaging the interaction over the transverse distribution $n_{\perp}(\mathbf{r}_{\perp}) = |\phi_{\perp}(\mathbf{r}_{\perp})|^2$

$$g_D |\psi_D(\mathbf{r}_D)|^2 = \int g |\psi|^2 |\phi_\perp(\mathbf{r}_\perp)|^2 d\mathbf{r}_\perp = g |\psi_D(\mathbf{r}_D)|^2 \int |\phi_\perp(\mathbf{r}_\perp)|^4 d\mathbf{r}_\perp$$

$$g_D = \frac{g}{(\sqrt{2\pi}\ell_\perp)^{3-D}}$$

• 1D
$$g_1=2\hbar\omega_\perp a$$

case $\ell_{\perp} > a$: write $\psi(\mathbf{r}) = \psi_D(\mathbf{r}_D)\phi_{\perp}(\mathbf{r}_{\perp})$ and look for a GPE in dimension D:

$$-\frac{\hbar^2}{2M}\triangle_D\psi_D + U(\mathbf{r}_D)\psi_D + \mathbf{g}_D|\psi_D|^2\psi_D = \mu_D\psi_D$$

deduce g_D from averaging the interaction over the transverse distribution $n_{\perp}(\mathbf{r}_{\perp}) = |\phi_{\perp}(\mathbf{r}_{\perp})|^2$

$$g_D |\psi_D(\mathbf{r}_D)|^2 = \int g |\psi|^2 |\phi_\perp(\mathbf{r}_\perp)|^2 d\mathbf{r}_\perp = g |\psi_D(\mathbf{r}_D)|^2 \int |\phi_\perp(\mathbf{r}_\perp)|^4 d\mathbf{r}_\perp$$
$$g_D = \frac{g}{(\sqrt{2\pi}\ell_\perp)^{3-D}}$$

• 1D
$$g_1 = 2\hbar\omega_\perp a$$

• 2D
$$g_2 = \frac{\hbar^2}{M} \frac{\sqrt{8\pi}a}{\ell_\perp} = \frac{\hbar^2}{M} \tilde{g}_2$$

case $\ell_{\perp} < a$: renormalization of the interaction constant

case $\ell_{\perp} < a$: renormalization of the interaction constant

• 1D

$$g_{1D}=rac{g_1}{1-Arac{a}{\ell_\perp}},\quad g_1=2\hbar\omega_\perp a,\quad A\simeq 1$$

diverges for $a \sim \ell_{\perp} \Rightarrow$ confinement-induced resonance

Experiment with fermions: confinement-induced bound state of 40 K (Moritz et al., 2005) molecular bound state even for a<0 when $\ell_{\perp}\sim |a|$

case $\ell_{\perp} < a$: renormalization of the interaction constant

• 1D

$$g_{1D}=rac{g_1}{1-Arac{a}{\ell_\perp}}, \quad g_1=2\hbar\omega_\perp a, \quad A\simeq 1$$

diverges for $a \sim \ell_{\perp} \Rightarrow$ confinement-induced resonance

• 2D

$$g_{2D} = rac{g_2}{1 + rac{a}{\sqrt{2\pi}\ell_{\perp}} \ln(B/\pi k^2 \ell_{\perp}^2)}, \quad g_2 = rac{\hbar^2}{M} rac{\sqrt{8\pi}a}{\ell_{\perp}}, \quad B \simeq 0.9$$

- $g_{2D}>0$ for small ℓ_{\perp} even if a<0
- $k^2 \sim \frac{M}{\hbar^2} \mu \sim \frac{M}{\hbar^2} g_2 n = \tilde{g}_2 n \Rightarrow g_{2D}$ depends on atomic density

case $\ell_{\perp} < a$: renormalization of the interaction constant

• 1D

$$g_{1D}=rac{g_1}{1-Arac{a}{\ell_\perp}},\quad g_1=2\hbar\omega_\perp a,\quad A\simeq 1$$

diverges for $a \sim \ell_{\perp} \Rightarrow$ confinement-induced resonance

• 2D

Petrov, Holzmann, Shlyapnikov (2000)

confinement-induced resonance for a < 0

Compare interaction energy $E_I = ng_D$ to kinetic energy E_K to localize particles within $\ell = n^{-1/D}$ in dimension D

$$E_K \sim \frac{\hbar^2}{M\ell^2} = \frac{\hbar^2 n^{2/D}}{M} \implies \frac{E_I}{E_K} \sim \frac{Mg_D}{\hbar^2} n^{\frac{D-2}{D}}$$

Compare interaction energy $E_I = ng_D$ to kinetic energy E_K to localize particles within $\ell = n^{-1/D}$ in dimension D

$$E_{K} \sim \frac{\hbar^{2}}{M\ell^{2}} = \frac{\hbar^{2}n^{2/D}}{M} \implies \frac{E_{I}}{E_{K}} \sim \frac{Mg_{D}}{\hbar^{2}}n^{\frac{D-2}{D}}$$

• 3D: $\frac{E_L}{E_K} \sim 4\pi (na^3)^{1/3}$ gas parameter; strong interaction at high density

Compare interaction energy $E_I = ng_D$ to kinetic energy E_K to localize particles within $\ell = n^{-1/D}$ in dimension D

$$E_{K} \sim \frac{\hbar^{2}}{M\ell^{2}} = \frac{\hbar^{2}n^{2/D}}{M} \quad \Longrightarrow \quad \frac{E_{I}}{E_{K}} \sim \frac{Mg_{D}}{\hbar^{2}}n^{\frac{D-2}{D}}$$

- 3D: $\frac{E_l}{E_K} \sim 4\pi (na^3)^{1/3}$ gas parameter; strong interaction at high density
- 1D: $\frac{E_{l}}{E_{K}} \sim \frac{Mg_{1}}{\hbar^{2}n} \sim \frac{2a}{n\ell_{\perp}^{2}} = \gamma$ N.B. strong interaction $\gamma \gg 1$ means low density!

2D interacting gas:
$$\frac{E_I}{E_K} \sim \frac{Mg_D}{\hbar^2} n^{\frac{D-2}{D}} = \frac{Mg_{2D}}{\hbar^2}$$

$$\bullet \ \frac{M}{\hbar^2}g_{2D} = \frac{\tilde{g}_2}{1 + \frac{a}{\sqrt{2\pi}\ell_\perp}\ln(B/\pi k^2\ell_\perp^2)}, \quad k \sim \sqrt{n}, \ \tilde{g}_2 = \frac{\sqrt{8\pi}a}{\ell_\perp}$$

2D interacting gas:
$$\frac{E_I}{E_K} \sim \frac{Mg_D}{\hbar^2} n^{\frac{D-2}{D}} = \frac{Mg_{2D}}{\hbar^2}$$

$$\bullet \ \frac{\textit{M}}{\hbar^2} \textit{g}_{2D} = \frac{\tilde{\textit{g}}_2}{1 + \frac{\textit{a}}{\sqrt{2\pi}\ell_\perp} \ln(\textit{B}/\pi \, \textit{k}^2\ell_\perp^2)}, \quad \textit{k} \sim \sqrt{\textit{n}}, \ \tilde{\textit{g}}_2 = \frac{\sqrt{8\pi}\textit{a}}{\ell_\perp}$$

$$\bullet \ \ a_{2D} = \ell_\perp \sqrt{\frac{\pi}{B}} \exp\left(-\sqrt{\frac{\pi}{2}} \frac{\ell_\perp}{a}\right) \quad \text{2D scattering length}$$

2D interacting gas:
$$\frac{E_I}{E_K} \sim \frac{Mg_D}{\hbar^2} n^{\frac{D-2}{D}} = \frac{Mg_{2D}}{\hbar^2}$$

$$\bullet \ \frac{\textit{M}}{\hbar^2} \textit{g}_{2D} = \frac{\tilde{\textit{g}}_2}{1 + \frac{\textit{a}}{\sqrt{2\pi}\ell_\perp} \ln(\textit{B}/\pi \, \textit{k}^2\ell_\perp^2)}, \quad \textit{k} \sim \sqrt{\textit{n}}, \ \tilde{\textit{g}}_2 = \frac{\sqrt{8\pi}\textit{a}}{\ell_\perp}$$

- $a_{2D} = \ell_{\perp} \sqrt{\frac{\pi}{B}} \exp\left(-\sqrt{\frac{\pi}{2}} \frac{\ell_{\perp}}{a}\right)$ 2D scattering length
- $a > \ell_{\perp} \Longrightarrow a_{2D} \simeq \sqrt{\frac{\pi}{B}} \ell_{\perp}$ and $\frac{M}{\hbar^2} g_{2D} \simeq \frac{4\pi}{\ln(1/na_{2D}^2)}$ weak interaction for $\frac{1}{\ln(1/na_{2D}^2)} \ll 1$ 2D gas parameter

2D interacting gas:
$$\frac{E_I}{E_K} \sim \frac{Mg_D}{\hbar^2} n^{\frac{D-2}{D}} = \frac{Mg_{2D}}{\hbar^2}$$

$$\bullet \ \frac{\textit{M}}{\hbar^2} \textit{g}_{2\textit{D}} = \frac{\tilde{\textit{g}}_2}{1 + \frac{\textit{a}}{\sqrt{2\pi}\ell_\perp} \ln(\textit{B}/\pi \, \textit{k}^2\ell_\perp^2)}, \quad \textit{k} \sim \sqrt{\textit{n}}, \ \tilde{\textit{g}}_2 = \frac{\sqrt{8\pi}\textit{a}}{\ell_\perp}$$

- $a_{2D} = \ell_{\perp} \sqrt{\frac{\pi}{B}} \exp\left(-\sqrt{\frac{\pi}{2}} \frac{\ell_{\perp}}{a}\right)$ 2D scattering length
- $a > \ell_{\perp} \Longrightarrow a_{2D} \simeq \sqrt{\frac{\pi}{B}} \ell_{\perp}$ and $\frac{M}{\hbar^2} g_{2D} \simeq \frac{4\pi}{\ln(1/na_{2D}^2)}$ weak interaction for $\frac{1}{\ln(1/na_{2D}^2)} \ll 1$ 2D gas parameter
- $a \ll \ell_{\perp} \Longrightarrow \frac{M}{\hbar^2} g_{2D} \simeq \tilde{g}_2;$ density independent criterion

Introduction

Example in 2D: the Quantum Hall Effect

- Hall plateau for a chemical potential between Landau levels
- ullet conductivity restricted to the edges = 1D channels

Introduction

Example in 2D: the Quantum Hall Effect

- ullet edge states = 1D systems
- can carry excitations of fractional charge