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Introduction

The role of dimensionality in physics

Physics is qualitatively changed when dimension is reduced.
Examples include:

@ in 1D: absence of thermalisation of a 1D gas, ‘fermionization’
of an interacting Bose gas, renormalization of the
interactions...

@ in 2D: (fractional) quantum Hall effect, Kosterlitz-Thouless
transition, renormalization of the interactions...
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Introduction
Example in 2D: the Quantum Hall Effect

@ 2D electron gas at the interface of a semiconductor
heterojunction

@ longitudinal current I, high perpendicular magnetic field B,
@ measure the transverse voltage Viy =V,

Source

P, m oo
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| |
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Introduction
Example in 2D: the Quantum Hall Effect

@ plateaux of Hall resistance R = ‘,/—Xy =h  ieN*

je2?
@ longitudinal resistance Ry = —‘,/X =
X
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Introduction

Production of low-D gases

Experimental realization of low-D gases: strongly confine 3 — D
directions (kg T, 1 < hw, )

kg T,p < hwy
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Introduction

Production of low-D gases

Experimental realization of low-D gases: strongly confine 3 — D
directions (kg T, 1 < hw, )

o optical lattices in 3 — D directions
|
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Introduction

Production of low-D gases

Experimental realization of low-D gases: strongly confine 3 — D
directions (kg T, 1 < hw, )

o optical lattices in 3 — D directions

@ 2D optical surface traps / rf-dressed magnetic traps
m

Innsbruck z (um)
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Introduction

Production of low-D gases

Experimental realization of low-D gases: strongly confine 3 — D
directions (kg T, 1 < hw, )

o optical lattices in 3 — D directions

@ 2D optical surface traps / rf-dressed magnetic traps

Villetaneuse
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Introduction

Production of low-D gases

Experimental realization of low-D gases: strongly confine 3 — D
directions (kg T, 1 < hw, )

o optical lattices in 3 — D directions
@ 2D optical surface traps / rf-dressed magnetic traps
@ anisotropic magnetic traps on chips

Many groups...
including Vienna!
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Introduction

General references:

@ Bose-Einstein Condensation, Lev Pitaevskii and Sandro
Stringari, Oxford (2003)

@ Quantum Gases in Low Dimensions, edited by L. Pricoupenko,
H. Perrin and M. Olshanii, J. Phys IV 116 (2004)
Les Houches lectures by Shlyapnikov, Castin, Olshanii,
Stringari, Cirac and Doucot.

e Many body physics with ultra cold gases, |. Bloch, J. Dalibard
and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

.. and (many) references therein.

Héléne Perrin Low-dimensional Bose gases | Part 1



Outline

OUTLINE OF THE LECTURE
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BEC of an ideal gas in reduced dimensions

BEC of an ideal gas in reduced dimensions
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Reminder: Bose-Einstein condensation

non interacting Bose gas, non degenerate ground state of energy gg
semi-classical approach (valid if kg T > Ae ~ hwg or h? /2ML?)
Bose-Einstein distribution in the grand canonical ensemble:

1

") oo 17°
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Reminder: Bose-Einstein condensation

non interacting Bose gas, non degenerate ground state of energy gg
semi-classical approach (valid if kg T > Ae ~ hwg or h? /2ML?)
Bose-Einstein distribution in the grand canonical ensemble:

1

T (B -1°

chemical potential u < g9 determined by the normalisation
condition:

0

n(e)

N=Ny+ N = /p(e)n(s)ds
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Reminder: Bose-Einstein condensation

non interacting Bose gas, non degenerate ground state of energy gg
semi-classical approach (valid if kg T > Ae ~ hwg or h? /2ML?)
Bose-Einstein distribution in the grand canonical ensemble:

Cexp(Ble—p)—17

chemical potential u < g9 determined by the normalisation
condition:

n(e) 0

N=No+ N = /p(e)n(s)ds
p(e): density of states, depends on the system (trap, free bosons...)

No = n(ep): mean number of particles in the ground state
N’: mean number of particles in the excited states
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Reminder: Bose-Einstein condensation

The occupancy n'(g) of each excited level is bounded from above
using p < €o:

’ —npB(e—eo)
"6 < i) Ze
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Reminder: Bose-Einstein condensation

The occupancy n'(g) of each excited level is bounded from above

using p < €o:
n(e) < e—nﬁa 80)
() exp(ﬁ(s —€0)) Z
Then N' = [ p(e)n'(e)de < Nc(T), where

Nc(T / Z e Ble—c0) g = Z e”ﬁeo/ _”ﬁsds
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Reminder: Bose-Einstein condensation

The occupancy n'(g) of each excited level is bounded from above

using p < €o:
n(e) < e—nﬁa 80)
() exp(ﬁ(s —€0)) Z
Then N' = [ p(e)n'(e)de < Nc(T), where

Nc(T / Z e M) g = Z e”ﬁeo/ _”ﬁsds

If this integral is finite, No > N — N¢(T).
Tc such that Nc(T¢) = N. N¢(T) increases with T.
T<Tc= Ny>0 Bose-Einstein condensation
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Reminder: Bose-Einstein condensation

The occupancy n'(g) of each excited level is bounded from above

using p < €o:
n(e) < e—nﬁa 80)
() exp(ﬁ(s —€0)) Z
Then N' = [ p(e)n'(e)de < Nc(T), where

Nc(T / Z e Ble—c0) g = Z e”ﬁeo/ _”ﬁeds

If this integral is finite, No > N — N¢(T).

T¢ such that Nc(T¢) = N. N¢(T) increases with T.
T<Tc= Ny>0 Bose-Einstein condensation
Depending on p(e), Nc¢ is finite or not...
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Role of the density of states

An important particular case: power law density of state
p(e) o (€ — £0)* with £ > &g

00 0o o0 1
Ne(T) Z/o eke™de o (kgT)<'1 Z sy
n=1

n=1
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Role of the density of states

An important particular case: power law density of state
p(e) o (€ — £0)* with £ > &g

00 0o . o0 1
Ne(T) Z/o eke™de o (kgT)<'1 Z sy
n=1 n=1

Converges for k > 0.

Fraction of condensed particles:

N, T k+1
Nc(Tc):N - 0_1_()
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A slightly different approach

o at fixed T, calculate N'(u) = [ p(e)

o For p(e) o< (£ — e0)k, /V/(Z) T +1é~’/<+1( )
as a function of the fugacity z = e#(t—0) < 1.

n
gk+1(z Z P polylogarithm or Bose function.
n=1

increasing function of z (or p).

o If N’ can take any value for u < g9 or z < 1, no BEC. For any
N, one can find a u such that N'(u) = N and Np < N.

e If N'(u) = N has no solution for large enough N,
Bose-Einstein condensation.

e Again, gx+1(1) is finite for k < 0.
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Example: Bose-Einstein condensation in a 3D box

3D box: p(g) x /e, k = % = series ~ # converges,

g3/2(1) = 2.612 is finite

L3
N'(T,p) = F&/z(eﬁ“)
h A 7/7
where \ =
o Mkg T
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Example: Bose-Einstein condensation in a 3D box

3D box: p(g) x /e, k = % = series ~ # converges,
g3/2(1) = 2.612 is finite

100000
80000
60000

L3 N M :

NC(T) = 2612? 40000 NDI

NC(T) x -,—3/2 20000 T

; ] iTc
020 460 800 800 1000
hZ
T[2L2M,‘r]
Saturation of the excited states: T¢ given by %A3 =2.612
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BEC in lower dimensions?

Does BEC also happen in lower dimensions?

@ box of dimension D:
1

p(e) x e~ = D>2
BEC possible only for D = 3 at finite T in thermodynamic
limit
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BEC in lower dimensions?

Does BEC also happen in lower dimensions?

@ box of dimension D:

p(e) x g3l = D>2
BEC possible only for D = 3 at finite T in thermodynamic
limit

@ spherical harmonic trap of dimension D, frequency wy:
p(e) oc eP1 = D>1
BEC possible for D =3 and D =2
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BEC in lower dimensions?

Does BEC also happen in lower dimensions?

@ box of dimension D:

p(e) x g3l = D>2
BEC possible only for D = 3 at finite T in thermodynamic
limit
@ spherical harmonic trap of dimension D, frequency wy:
p(e) oc eP1 = D>1
BEC possible for D =3 and D =2
1 No T\"
kg T¢c ~ ND hw —=1—- =
BIcC b hwo N (Tc>

N.B. T¢ ~ T, degeneracy temperature kg Ty = N%hwo
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1D harmonic trap

Finite size effect: refining the 1D trapped case
gap Ae = fuwyg to the first excited state
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1D harmonic trap

Finite size effect: refining the 1D trapped case
gap Ae = fuwyg to the first excited state

0 00 s kBT & e—nﬂhwo
Ne(T) =3 [ e)e o = JEL Y S
n=1" %0 n=1
kg T _ kg T kg T
Ne(T) = — Ln(l — e Pwo)y~ 22 | n [ 2=
C( ) th n( € ) hwo n<hw0>
N
kg Tc ~ hwog——
BIlC OLnN

N.B. T¢c « T4 with Ty = Nhwy degeneracy temperature;

% — 0 in the thermodynamic limit (% = cst in 2D or 3D)
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Coherence of the condensate

coherence is described by first order correlation function

{0 (r))

Wy ) —
&)= aon)

5r2
Above T¢: Gaussian decay: g(V)(6r) = e ">  box / trap
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Coherence of the condensate

coherence is described by first order correlation function

{0 (r))

Wy ) —
&)= aon)

r2
Above T¢: Gaussian decay: g (dr) = e ™ box / trap
Below Tc: phase fluctuations are dominant ¢(r) = /n(r)e’*(")

g(l)(r’ r,) ~ <el((2)(l’)—(2)(r/))> — e_%<6(2)2>

phase fluctuations 6 = ¢(r) — ¢(r') determine the coherence of
the Bose gas.
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Coherence of the condensate

phase fluctuations are increased in reduced dimension.
In the limit 6r — oo:

e 3D: <5<1A52) ~cst = gl ~ % long range order
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Coherence of the condensate

phase fluctuations are increased in reduced dimension.
In the limit 6r — oo:

@ 3D: (64?) ~ cst = g(1) ~ % long range order
08 \ g, ]
wl N TR Yo+t ] BEC
£ \ N T ] O — No/N

Bloch, Hansch, ~ § =1 & o/
Esslinger (2000)  ~ | % arzmone ]

02 - N\, n oT=450nK

[ R o T =290 nK
. o P «—— thermal gas
- . . : : - Gaussian decay

0 100 200 300 400 500 600 700
Az (nm)
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Coherence of the condensate

phase fluctuations are increased in reduced dimension.
In the limit 6r — oo:

@ 3D: (64?) ~ cst = g(1) ~ % long range order
08 \ g, ]
wl N TR Yo+t ] BEC
£ \ N T ] O — No/N

Bloch, Hansch, ~ § =1 & o/
Esslinger (2000)  ~ | % arzmone ]

02 - N\, n oT=450nK

[ R o T =290 nK
. o P «—— thermal gas
- . . : : - Gaussian decay

0 100 200 300 400 500 600 700
Az (nm)
1

o 2D: (6¢2) ~ In(0r) = g ~ 6r a2 algebraic decay
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Coherence of the condensate

phase fluctuations are increased in reduced dimension.
In the limit 6r — oo:

e 3D: <5<1A52) ~cst = gl ~ % long range order
L S
0l 2 =
‘ ‘\0\6\ o, ]
[ 4 i o S «— BEC
g "r AN s 1 g0 = /N
Bloch, Hansch, & Banas Y
Esslinger (2000)  ~ | %a e ]
02 - N\, n oT=450nK
L LN o T =290 nK
R «—— thermal gas
e e v -
Gaussian decay
0 100 200 300 400 500 600 700
Az (nm)
N _1 :
o 2D: (6¢?) ~ In(6r) = gV ~ §r~ w2 algebraic decay
_sr
o 1D: (§¢?) ~ 6r = gV ~e % exponential decay
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Coherence of the condensate

Evidence for phase fluctuations in a 3D elongated geometry:

b

: . T,
phase domains of size £ o<
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Coherence of the condensate

Evidence for phase fluctuations in a 3D elongated geometry:
phase domains of size £, %
Dettmer et al., 2001: phase fluctuations translated into density

fluctuations after tlme of- fllght

. . Eaj
T=09T¢ , i -8 —
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Coherence of the condensate

Evidence for phase fluctuations in a 3D elongated geometry:

. . T,
phase domains of size £ o<

Dettmer et al., 2001: phase fluctuations translated into density
fluctuations after tlme of- fllght

_—— 0 '

T—06Tc . .
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Taking into account interactions

Interactions in lower dimension
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Scattering theory

Rigorous approach: solve the scattering problem in dimension D.
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Scattering theory

Rigorous approach: solve the scattering problem in dimension D.
Reminder: in 3D, s-wave scattering at low energy = simple
dephasing —ka of the wave function

™~ s
/"

kz

eik(r—a)

plane wave e’ spherical wave
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Scattering theory

Rigorous approach: solve the scattering problem in dimension D.
Reminder: in 3D, s-wave scattering at low energy = simple
dephasing —ka of the wave function

™~ s
/"

kz

eik(r—a)

plane wave e’ spherical wave

scattering length a contains all relevant scattering information
= use an effective contact interaction gd(r)

B 4rh?a
83D = M
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Formation of molecules

@ a — oo if there is a molecular bound state of zero energy

@ a > 0 and large: last bound state close to dissociation
threshold
h2

Ep~———
b Ma?

fe>
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Formation of molecules

@ a — oo if there is a molecular bound state of zero energy

@ a > 0 and large: last bound state close to dissociation
threshold

@ a < 0 and large: virtual state above dissociation threshold
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Formation of molecules

@ a — oo if there is a molecular bound state of zero energy

@ a > 0 and large: last bound state close to dissociation

threshold

@ a < 0 and large: virtual state above dissociation threshold

@ At a Feshbach resonance, the
changes sign when varying B.

Feshbach resonance in
sodium
Inouye et al. (1998)

Scattering length a/ae v>

scattering length diverges and

w‘.N
T T
el

0.3

Magnetic field (G)

Hélene Perrin
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Formation of molecules

a — oo if there is a molecular bound state of zero energy

a > 0 and large: last bound state close to dissociation
threshold

a < 0 and large: virtual state above dissociation threshold

At a Feshbach resonance, the scattering length diverges and
changes sign when varying B.

A B ramp from a < 0 to a > 0 can produce molecules with
hQ

binding energy E, = vz
a
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Gross-Pitaevskii equation

dilute gas (na® < 1); all particles in the same single particle state;
mean field approach; g enters in the interaction term of
Gross-Pitaevskii equation for the condensate wave function

h2

2,
—5 U+ U + gll? =
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Gross-Pitaevskii equation

dilute gas (na® < 1); all particles in the same single particle state;
mean field approach; g enters in the interaction term of
Gross-Pitaevskii equation for the condensate wave function

h? 2,
— S 0+ V(DY + gl P = o

Thomas Fermi regime if Na > ano or p > hw:
p— U(r)

in a harmonic trap:
X (Na)2/5

Rre o (Na)t/®
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Gross-Pitaevskii equation

dilute gas (na® < 1); all particles in the same single particle state;
mean field approach; g enters in the interaction term of
Gross-Pitaevskii equation for the condensate wave function

h2

2,
—5 U+ U + gll? =

Thomas Fermi regime in a box: uniform n except at the edges, on

a size &
healing length &:

& 2

2ME2

=

1

&= v 8mna
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Interactions in dimension D

What about interactions in dimension D?

1 ,

o —

3 — D directions confined to the ground state of an harmonic
oscillator w , to a size | = \/hA/Mw, . Implies pip < hw .
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Interactions in dimension D

What about interactions in dimension D?
14
l a

" ,
t ——

3 — D directions confined to the ground state of an harmonic
oscillator w , to a size | = \/hA/Mw, . Implies pip < hw .
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Interactions in dimension D

What about interactions in dimension D?

Two situations:

e/ >a
(thermo)dynamics in dimension D, collisions still in 3D

e/ <a
(thermo)dynamics and collisions in dimension D
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Interactions in dimension D

What about interactions in dimension D?

Two situations:

e/ >a
(thermo)dynamics in dimension D, collisions still in 3D

e/ <a
(thermo)dynamics and collisions in dimension D

Typically, £; >30nm, a~ afew nm =/, > a...
. unless a Feshbach resonance is used
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Regular case: /| > a

case ¢ > a: write ¥(r) = ¢¥p(rp)¢.(r1) and look for a GPE in
dimension D:

h2
—Wﬁowo + U(rp)p + gpl¥pl*¥p = motp
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Regular case: /| > a

case ¢ > a: write ¥(r) = ¢¥p(rp)¢.(r1) and look for a GPE in
dimension D:

h2
—Wﬁowo + U(rp)p + gpl¥pl*¥p = motp

deduce gp from averaging the interaction over the transverse
distribution n (r1) = ¢ (r1)[?

golvo(rp)* = /g\¢\2!m(u)!2m Ig\wo(ro)!2/1¢l(rL)!4de

gozig

(\/ﬂgLP—D
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Regular case: /| > a

case ¢ > a: write ¥(r) = ¢¥p(rp)¢.(r1) and look for a GPE in
dimension D:

h2
—Wﬁowo + U(rp)p + gpl¥pl*¥p = motp

deduce gp from averaging the interaction over the transverse
distribution n (r1) = ¢ (r1)[?

golvo(rp)* = /g\¢\2!m(u)!2m Ig\wo(ro)!2/1¢l(rL)!4de

gozig

(\/ﬂgLP—D

e 1D g1:2hwj_a
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Regular case: /| > a

case ¢ > a: write ¥(r) = ¢¥p(rp)¢.(r1) and look for a GPE in
dimension D:

h2
—Wﬁowo + U(rp)p + gpl¥pl*¥p = motp

deduce gp from averaging the interaction over the transverse
distribution n (r1) = ¢ (r1)[?

golvo(rp)* = /g\¢\2!m(u)!2m Ig\wo(ro)!2/1¢l(rL)!4de

_ g
&0 = (\/ 27T€J_)3_D
e 1D 81 = 2hwj_a
h? \/8ra B h?

e 2D

8 = =382
M ¢ M
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Exotic case: /| < a

case /| < a: renormalization of the interaction constant
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Exotic case: /| < a

case /| < a: renormalization of the interaction constant

e 1D g
1
BID=7" 13 817 2hwia, Ax~1
i

diverges for a ~ £, = confinement-induced resonance

Experiment with fermions:

u%. sor confinement-induced bound state of
g 40K (Moritz et al., 2005)
2" : molecular bound state even for a < 0
E 50 2 ErF:ssc:E?e | when EJ_ ~ |a|

201 202 203

Magnetic field B [G]
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Exotic case: /| < a

case /| < a: renormalization of the interaction constant

e 1D g
1
81D - A7’ g1 =2hw, a,

diverges for a ~ £, = confinement-induced resonance

e 2D
82 h2 8ma
82D = , &= — , B~0.9
1+ \/ih In(B/wszi) M ¢

e gop >0 for small /] evenif a<0
o k%~ %u ~ %ggn = g>n = g»p depends on atomic density
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Exotic case: /| < a

case /| < a: renormalization of the interaction constant
e 1D

81
- __°- = 2hw A~1
81D = 7 Aei’ 81 14, =

diverges for a ~ £, = confinement-induced resonance

15
e 2D b)
1.0 /

O =7 :
05] — _ cs
0.0 Re=100A, a=-600A

Petrov, Holzmann, 0] nn:wacm_zl‘,/——-

Shlyapnikov (2000) 0]

15 Frvene . S—— v
025 05 1 2 4 8 16 32
IR,

mg/2h’

confinement-induced resonance for a < 0
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Strong or weak interaction?

Compare interaction energy E; = ngp to kinetic energy Ex to
localize particles within £ = n=%/P in dimension D

K2 h2n?/D E, Mgp b

Er\/i_i = e =5
K™ W2 M ET m "
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Strong or weak interaction?

Compare interaction energy E; = ngp to kinetic energy Ex to
localize particles within £ = n=%/P in dimension D

K2 h2n?/D E, Mgp b

Er\/i_i = e =5
K™ W2 M ET m "

e 3D: E%’( ~ 4m(na®)/3
gas parameter; strong interaction at high density
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Strong or weak interaction?

Compare interaction energy E; = ngp to kinetic energy Ex to
localize particles within £ = n=%/P in dimension D

K2 h2n?/D E, Mgp b

Ewi_i L Y i
K™ W2 M ET m "

e 3D: E%’( ~ 4m(na®)/3

gas parameter; strong interaction at high density

. E Mg | 2a _
o 1D: g8 ~ 35 ~ o T

N.B. strong interaction v > 1 means low density!
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Strong or weak interaction?

Ei Mgp o2 Mgp

2D interacting gas: Ex 2 n =72
M & . 8rma
© 58D = 3 . k~Vn B =
h? 1+ N In(B/Tk?(%) 4y
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Strong or weak interaction?

Ei Mgp o2 Mgp

2D interacting gas: Ex 2 n =72
M & . 8rma
© 58D = 3 . k~Vn B =
h? 1+ N In(B/Tk?(%) 4y

@ ayp =1L,/ g exp (—ﬁ%) 2D scattering length
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Strong or weak interaction?

Ei Mgp o2 Mgp

2D interacting gas: Ex 2 n =72
M 82 - \/8771'3
° 58D = 2 , ke~ /n B =
h2 1+ N In(B/wk%i) )
@ app=1{ T exp | — EE—L 2D scattering length
B 2 a
M 4

1

weak interaction for (/a2 <1 2D gas parameter
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Strong or weak interaction?

Ei Mgp o2 Mgp

2D interacting gas: Ex 2 n = 2

M gz - vV 87Ta
© —S&p = , ke~ /n B =

h?2 1+ \/Tjrﬁ In(B/wk2£2l) )
@ ay)p =1/, s exp | — EE—L 2D scattering length

B 2 a
M 47
l, = ~ JEL d = ~

@ a>() ap \/E 1 an hzgzo In(l/nagD)

weak interaction for (/a2 <1 2D gas parameter

M - o o
0 ax !/l — ﬁgzg ~ g»; density independent criterion
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Introduction
Example in 2D: the Quantum Hall Effect

@ Hall plateau for a chemical potential between Landau levels
@ conductivity restricted to the edges = 1D channels

Edge states
Landan levels

Energy

]—- Position

Potential
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Introduction
Example in 2D: the Quantum Hall Effect

@ edge states = 1D systems
@ can carry excitations of fractional charge
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