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Introduction
The role of dimensionality in physics

Physics is qualitatively changed when dimension is reduced.
Examples include:

in 1D: absence of thermalisation of a 1D gas, ‘fermionization’
of an interacting Bose gas, renormalization of the
interactions...

in 2D: (fractional) quantum Hall effect, Kosterlitz-Thouless
transition, renormalization of the interactions...
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Introduction
Example in 2D: the Quantum Hall Effect

2D electron gas at the interface of a semiconductor
heterojunction

longitudinal current Ix , high perpendicular magnetic field Bz

measure the transverse voltage VH = Vy

plateaux of Hall resistance R =
Vy

Ix
= h

ie2 , i ∈ N∗

longitudinal resistance Rx = Vx
Ix

= 0
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Introduction
Production of low-D gases

Experimental realization of low-D gases: strongly confine 3− D
directions (kBT , µ� ~ω⊥)

kBT , µ� ~ω⊥

optical lattices in 3− D directions

2D optical surface traps / rf-dressed magnetic traps

Innsbruck

Villetaneuse

anisotropic magnetic traps on chips

Many groups...
including Vienna!
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Introduction

General references:

Bose-Einstein Condensation, Lev Pitaevskii and Sandro
Stringari, Oxford (2003)

Quantum Gases in Low Dimensions, edited by L. Pricoupenko,
H. Perrin and M. Olshanii, J. Phys IV 116 (2004)
Les Houches lectures by Shlyapnikov, Castin, Olshanii,
Stringari, Cirac and Douçot.

Many body physics with ultra cold gases, I. Bloch, J. Dalibard
and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

... and (many) references therein.
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Outline

Outline of the lecture
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BEC of an ideal gas in reduced dimensions

BEC of an ideal gas in reduced dimensions
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Reminder: Bose-Einstein condensation

non interacting Bose gas, non degenerate ground state of energy ε0

semi-classical approach (valid if kBT � ∆ε ∼ ~ω0 or ~2/2ML2)
Bose-Einstein distribution in the grand canonical ensemble:

n(ε) =
1

exp(β(ε− µ))− 1
≥ 0

chemical potential µ < ε0 determined by the normalisation
condition:

N = N0 + N ′ =

∫
ρ(ε)n(ε)dε

ρ(ε): density of states, depends on the system (trap, free bosons...)
N0 = n(ε0): mean number of particles in the ground state
N ′: mean number of particles in the excited states
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Reminder: Bose-Einstein condensation

The occupancy n′(ε) of each excited level is bounded from above
using µ < ε0:

n′(ε) <
1

exp(β(ε− ε0))− 1
=
∞∑

n=1

e−nβ(ε−ε0).

Then N ′ =
∫
ρ(ε)n′(ε)dε < NC (T ), where

NC (T ) =

∫
ρ(ε)

∞∑
n=1

e−nβ(ε−ε0)dε =
∞∑

n=1

enβε0

∫
ρ(ε)e−nβεdε.

If this integral is finite, N0 > N − NC (T ).
TC such that NC (TC ) = N. NC (T ) increases with T .
T < TC =⇒ N0 > 0 Bose-Einstein condensation
Depending on ρ(ε), NC is finite or not...
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Role of the density of states

An important particular case: power law density of state
ρ(ε) ∝ (ε− ε0)k with ε > ε0

NC (T ) ∝
∞∑

n=1

∫ ∞
0

εke−nβεdε ∝ (kBT )k+1
∞∑

n=1

1

nk+1

Converges for k > 0.

Fraction of condensed particles:

NC (TC ) = N =⇒ N0

N
= 1−

(
T

TC

)k+1
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A slightly different approach

at fixed T , calculate N ′(µ) =
∫
ρ(ε)n′(ε)dε

For ρ(ε) ∝ (ε− ε0)k , N ′(z) ∝ T k+1gk+1(z)
as a function of the fugacity z = eβ(µ−ε0) < 1.

gk+1(z) =
∞∑

n=1

zn

nk+1
polylogarithm or Bose function.

increasing function of z (or µ).

If N ′ can take any value for µ < ε0 or z < 1, no BEC. For any
N, one can find a µ such that N ′(µ) = N and N0 � N.

If N ′(µ) = N has no solution for large enough N,
Bose-Einstein condensation.

Again, gk+1(1) is finite for k < 0.
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Example: Bose-Einstein condensation in a 3D box

3D box: ρ(ε) ∝
√
ε, k = 1

2 ⇒ series ∼ 1
n3/2 converges,

g3/2(1) = 2.612 is finite

N ′(T , µ) =
L3

λ3
g3/2(eβµ)

where λ =
h√

2πMkBT

NC (T ) = 2.612
L3

λ3

NC (T ) ∝ T 3/2

Saturation of the excited states: TC given by N
L3λ

3 = 2.612
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BEC in lower dimensions?

Does BEC also happen in lower dimensions?

box of dimension D:
ρ(ε) ∝ ε

D
2
−1 =⇒ D > 2

BEC possible only for D = 3 at finite T in thermodynamic
limit

spherical harmonic trap of dimension D, frequency ω0:
ρ(ε) ∝ εD−1 =⇒ D > 1
BEC possible for D = 3 and D = 2

kBTC ∼ N
1
D ~ω0

N0

N
= 1−

(
T

TC

)D

N.B. TC ∼ Td degeneracy temperature kBTd = N
1
D ~ω0
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1D harmonic trap

Finite size effect: refining the 1D trapped case
gap ∆ε = ~ω0 to the first excited state

NC (T ) =
∞∑

n=1

∫ ∞
~ω0

ρ(ε)e−nβεdε =
kBT

~ω0

∞∑
n=1

e−nβ~ω0

n

NC (T ) = −kBT

~ω0
Ln(1− e−β~ω0) ' kBT

~ω0
Ln

(
kBT

~ω0

)

kBTC ' ~ω0
N

LnN

N.B. TC � Td with Td = N~ω0 degeneracy temperature;
TC
Td
−→ 0 in the thermodynamic limit (TC

Td
= cst in 2D or 3D)
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Coherence of the condensate

coherence is described by first order correlation function

g (1)(r, r′) =
〈ψ̂+(r)ψ̂(r′)〉√

n(r)n(r′)

Above TC : Gaussian decay: g (1)(δr) = e−π
δr2

λ2 box / trap

Below TC : phase fluctuations are dominant ψ̂(r) =
√

n(r)e i φ̂(r)

g (1)(r, r′) ' 〈e i(φ̂(r)−φ̂(r′))〉 = e−
1
2
〈δφ̂2〉

phase fluctuations δφ̂ = φ(r)− φ(r′) determine the coherence of
the Bose gas.
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Coherence of the condensate

phase fluctuations are increased in reduced dimension.
In the limit δr →∞:

3D: 〈δφ̂2〉 ∼ cst⇒ g (1) ∼ N0
N long range order

Bloch, Hänsch,

Esslinger (2000)

←− BEC
g (1) = N0/N

←− thermal gas
Gaussian decay

2D: 〈δφ̂2〉 ∼ ln(δr)⇒ g (1) ∼ δr−
1

nλ2 algebraic decay

1D: 〈δφ̂2〉 ∼ δr ⇒ g (1) ∼ e
− δr
`φ exponential decay
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Coherence of the condensate

Evidence for phase fluctuations in a 3D elongated geometry:

phase domains of size `φ ∝
Tφ
T

Dettmer et al., 2001: phase fluctuations translated into density
fluctuations after time-of-flight

T = 0.9TC

T = 0.6TC
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Taking into account interactions

Interactions in lower dimension
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Scattering theory

Rigorous approach: solve the scattering problem in dimension D.

Reminder: in 3D, s-wave scattering at low energy ⇒ simple
dephasing −ka of the wave function

plane wave e ikz spherical wave
e ik(r−a)

r
scattering length a contains all relevant scattering information
⇒ use an effective contact interaction gδ(r)

g3D =
4π~2a

M
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Formation of molecules

a→∞ if there is a molecular bound state of zero energy

a > 0 and large: last bound state close to dissociation
threshold

Eb ≈ −
~2

Ma2

a < 0 and large: virtual state above dissociation threshold

At a Feshbach resonance, the scattering length diverges and
changes sign when varying B.

Feshbach resonance in
sodium
Inouye et al. (1998)

A B ramp from a < 0 to a > 0 can produce molecules with

binding energy Eb = − ~2

Ma2
.
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Gross-Pitaevskii equation

dilute gas (na3 � 1); all particles in the same single particle state;
mean field approach; g enters in the interaction term of
Gross-Pitaevskii equation for the condensate wave function

− ~2

2M
4ψ + U(r)ψ + g |ψ|2ψ = µψ

Thomas Fermi regime if Na� aho or µ� ~ω:

|ψ|2 = n(r) =
µ− U(r)

g

in a harmonic trap:

µ ∝ (Na)2/5

RTF ∝ (Na)1/5

Thomas Fermi regime in a box: uniform n except at the edges, on
a size ξ

healing length ξ:

~2

2Mξ2
= µ

ξ =
1√

8πna
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Gross-Pitaevskii equation for the condensate wave function

− ~2

2M
4ψ + U(r)ψ + g |ψ|2ψ = µψ

Thomas Fermi regime if Na� aho or µ� ~ω:

|ψ|2 = n(r) =
µ− U(r)

g

in a harmonic trap:

µ ∝ (Na)2/5

RTF ∝ (Na)1/5

Thomas Fermi regime in a box: uniform n except at the edges, on
a size ξ

healing length ξ:

~2

2Mξ2
= µ

ξ =
1√

8πna
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Interactions in dimension D

What about interactions in dimension D?

3− D directions confined to the ground state of an harmonic
oscillator ω⊥, to a size `⊥ =

√
~/Mω⊥. Implies µD � ~ω⊥.

Two situations:

`⊥ > a
(thermo)dynamics in dimension D, collisions still in 3D

`⊥ < a
(thermo)dynamics and collisions in dimension D

Typically, `⊥ > 30 nm, a ∼ a few nm ⇒ `⊥ > a...
... unless a Feshbach resonance is used
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Regular case: `⊥ > a

case `⊥ > a: write ψ(r) = ψD(rD)φ⊥(r⊥) and look for a GPE in
dimension D:

− ~2

2M
4DψD + U(rD)ψD + gD |ψD |2ψD = µDψD

deduce gD from averaging the interaction over the transverse
distribution n⊥(r⊥) = |φ⊥(r⊥)|2

gD |ψD(rD)|2 =

∫
g |ψ|2|φ⊥(r⊥)|2dr⊥ = g |ψD(rD)|2

∫
|φ⊥(r⊥)|4dr⊥

gD =
g

(
√

2π`⊥)3−D

1D g1 = 2~ω⊥a

2D g2 =
~2

M

√
8πa

`⊥
=

~2

M
g̃2
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Exotic case: `⊥ < a

case `⊥ < a: renormalization of the interaction constant

1D
g1D =

g1

1− A a
`⊥

, g1 = 2~ω⊥a, A ' 1

diverges for a ∼ `⊥ ⇒ confinement-induced resonance

Experiment with fermions:
confinement-induced bound state of
40K (Moritz et al., 2005)
molecular bound state even for a < 0
when `⊥ ∼ |a|

2D

g2D =
g2

1 + a√
2π`⊥

ln(B/πk2`2
⊥)
, g2 =

~2

M

√
8πa

`⊥
, B ' 0.9

g2D > 0 for small `⊥ even if a < 0
k2 ∼ M

~2µ ∼ M
~2 g2n = g̃2n ⇒ g2D depends on atomic density

Petrov, Holzmann,
Shlyapnikov (2000)

confinement-induced resonance for a < 0
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Strong or weak interaction?

Compare interaction energy EI = ngD to kinetic energy EK to
localize particles within ` = n−1/D in dimension D

EK ∼
~2

M`2
=

~2n2/D

M
=⇒ EI

EK
∼ MgD

~2
n

D−2
D

3D: EI
EK
∼ 4π(na3)1/3

gas parameter; strong interaction at high density

1D: EI
EK
∼ Mg1

~2n
∼ 2a

n`2
⊥

= γ

N.B. strong interaction γ � 1 means low density!
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Strong or weak interaction?

2D interacting gas:
EI

EK
∼ MgD

~2
n

D−2
D =

Mg2D

~2

M

~2
g2D =

g̃2

1 + a√
2π`⊥

ln(B/πk2`2
⊥)
, k ∼

√
n, g̃2 =

√
8πa

`⊥

a2D = `⊥

√
π

B
exp

(
−
√
π

2

`⊥
a

)
2D scattering length

a > `⊥ =⇒ a2D '
√

π
B `⊥ and

M

~2
g2D '

4π

ln(1/na2
2D)

weak interaction for 1
ln(1/na2

2D)
� 1 2D gas parameter

a� `⊥ =⇒ M

~2
g2D ' g̃2; density independent criterion
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Introduction
Example in 2D: the Quantum Hall Effect

Hall plateau for a chemical potential between Landau levels

conductivity restricted to the edges = 1D channels

edge states = 1D systems

can carry excitations of fractional charge
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