Atoms and photons Chapter 4

H. Perrin

December 13, 2022

Hanbury Brown and Twiss experiments with atoms

Jeltes et al., Nature 445, 402 (2007)

Antibunching for a single emitter

experimental setup

H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. **39**, 691 (1977)

H. Perrin Atoms and photons December 13, 2022

3 / 17

Antibunching for a single emitter

semiconductor nanocrystals

G. Messin, J. P. Hermier, E. Giacobino, P. Desbiolles, and M. Dahan, Optics Letters **26**, 1891 (2001)

Evolution in vacuum

$$|\psi(t=0)\rangle = |e,0\rangle$$

Evolution of the population P_e :

Brune et al., PRL 1996 / Assemat et al., PRL 2019

Evolution in a coherent state

 $|\psi(t=0)\rangle = |e,\alpha\rangle$ Evolution of the population P_e :

Evolution in a coherent state – recent experiment

Rabi oscillations in a small microwave field in a cavity.

Evolution of the population P_e

Fourier transform of the signal

Assemat et al., PRL **123**, 143605 (2019).

QND measurement of a photon

The dephasing allows to detect the presence of a photon in the cavity.

Generalization to *n* photons

Dephasing: $\Delta \varphi = t \times (2n+1)\Omega_1^2/4\Delta$

Choose Δ such that the dephasing is $n\pi/4$ (+ offset). The detection will give partial information on the photon number up to n=7.

Generalization to *n* photons

Example: detect a field state with $n \le 7$

initial flat P(n):

P(n) after detection in $|e\rangle$:

P(n) after detection in $|g\rangle$:

Collapse to a photon number state

Evolution of P(n) while detecting 110 atoms in a single sequence:

- Initial coherent field with 3.7 photons
- Initial inferred distribution flat (no information) but final result independent of initial choice
- Progressive collapse of the field state vector during information acquisition

Superradiance of *N* emitters

Theory: from Claude Fabre's lecture notes

Experiment, forward scattering: S. J. Roof, K. J. Kemp, M. D. Havey and I. M. Sokolov, Phys. Rev. Lett. **117**, 073003 (2016)

Superradiance of N emitters

Experiment, transverse scattering: radiation faster by a factor 3-5.

M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, Phys. Rev. Lett. **117**, 073002 (2016).

13 / 17

Cavity QED with N atoms

Experiments of the Jakob Reichel's group: cold atoms in a fiber based microcavity on an atom chip. Splitting \propto coupling \propto \sqrt{N}

Cavity QED with N atoms

Transmission spectrum with $\Delta_c=0$ and variable N. Splitting \propto coupling $\propto \sqrt{N}$

Cavity QED with N atoms

Transmission spectrum with N=750 and variable Δ_c

Detection of single atoms with the cavity

Cavity on resonance $\Delta_c = 0$

