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The Blackbody problem

Emission by a small hole in a heated oven.

All incident
radiationis -
absorbed T

Blackbody

Radiator Emitted Radiationis only a function
of Radiator’s Temperature
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The Blackbody problem

Emission by a small hole in a heated oven. What is known at Planck’s time:

» The radiation is universal
» Stefan's law
P =oST* (1)
where o = 5.671078 W/m?K*
» Lambert's law
dP = LS cosf dQ2 (2)

where the luminance L is related to the total density of energy in the
oven u = [ u, dv, by:

cu cSu
L = — = —
47 = 4 (3)
and 4
= —oT* 4
u CU (4)
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The Blackbody problem

Emission by a small hole in a heated oven. What is known at Planck’s time:

» Wien's displacement law
3, (V
, = v (=) 5
u, =vf (& (5)
» Wien's phenomenological model at high frequencies
u, = arde /T (6)

» And many precise measurements of the spectrum (pyrometry).

Problem: how can we derive the law for any frequency? Can we compute o
from physical constants?
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The Blackbody problem

Counting the modes

Assume a cubic volume V = L3 for the oven, with periodic boundary
conditions. Support only plane waves with k = (ky, ky, k;) so that

ky = —ny (7)

where n, , . is a set of three positive or negative integers. Two orthogonal
polarizations for each set of integers. Energies of all these ‘modes’ add up
independently (detailed justification later).

N, the total number of modes k < 27 /c. Number of modes per unit
volume between v and v + dv: p, dv

1 dN,
=Y dy ()
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The Blackbody problem

Counting the modes

k < 2mv/c e 2m|n]/L < 2nv/c < |n] < vL/c. Counting the modes with a
frequency lower than v amounts to counting twice (two polarizations) the
number of points with integer coordinates in a sphere of radius vL/c:

4r (vL\® 8118
N, =2 — )] = —=—=V. 9
3 (c) 3 C3V %)
Hence 1 dN g
v T 5
v = = — . ]_
p V dv c3y (10)
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The Blackbody problem

Rayleigh Jeans argument

Attribute the average thermal energy k, T to each mode
8m ,
u,=kpTpy=—ZVkp T (11)
c

» Fits with observation at low frequency

> Absurd at high frequencies: divergence of the spectrum and infinite
power

Classical statistical physics fails at explaining the blackbody radiation !
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The Blackbody problem

Planck’s argument

The light quantum

Planck’s hypothesis

The exchanges of energy between field and matter occur as multiples of a

fundamental quantum
hv (12)

where h is a ‘Hilfeconstant’. Hence E = nhv.

Average energy per mode (standard statistical physics)

. ZOO:O nefnhu/ka
E=hv Znoo e—nhy/ka (13)

n=0
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The Blackbody problem

Planck’s argument

0 —nhv/ky T
E= hyz”:o ne
ZOO 0 e—nhu/ka

n—=

With x = hv/kp T, we note that

> 1
D

n=0
and
> -X
Z ne ™ = SR I 5
= dxl—e™X (1-eX)
Finally,
— 1
E=hvn=nh 14
vn I/eX — (14)

Hélene Perrin - Jean-Michel Raimond Atoms and photons



The Blackbody problem

Planck’s argument

E=hvi=hv

ex —1

We finally get the Planck’s law:

— 8rhy3 1
u, = Ep, = 3 ehv/keT _1 (15)
In excellent agreement with experiments if
h=6.6210"3*J.5s (16)

N.B. In terms of A\ = ¢/v, we have

dv
dA

¢ 8mhc 1
b= = "\5 ehe/iT _ 1

u) =
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Planck 1900

The Blackbody problem

Limits
» For small frequencies: Rayleigh Jeans

871'1/
uy, =

ke T (17)

the classical predictions without field quantization (many photons per
mode).

» For large frequencies: phenomenological Wien's law

8rh3 _
» Explicit expression of Stefan’s constant
2m® ki
=L b (19)
15 c2h3
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Planck 1900

The Blackbody problem

u, (v) [J-m™3-PHz™]
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Planck 1900

The Blackbody problem

us(A) [Im~* - pm 7

: —— T=3500K

100
[ , . ———— 4000 K
08} [\ B
[ [\ y 4500 K
[ / B
[ [ \ | 5000 K
W K
06 | 3 3 5500 K
[ |
r I
L |
04l |
F |
L ]
]
r |
02f |
L |
|
r I/
0.0

Hélene Perrin - Jean-Michel Raimond Atoms and photons



The Blackbody problem

Einstein 1905, high frequency limit

A more solid justification of the heuristic Plank’s hypothesis. Starting point
u, = ale kT — e~ /T (20)

with v = h/kp. This leads by a simple inversion to:

v

T= [y /o]

(21)

Density of entropy s, du = T ds or ds/du =1/T and, by integration over u

< - /d,ln[u’/al/]
— ——[n——l} (22)

v L a3
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The Blackbody problem

Einstein 1905

Total entropy in volume V, S = sV, and total energy E = u)V linked by

E E
So the entropy for the volume V)
E E
S—So:—lnzzkb—lnZ (24)

Compare to the entropy variation of a perfect gas in an isothermal
compression

S —So = kyNln Y (25)
Vo

where N is the total number of particles. N = E/hv and E/N = hv.
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Husimi-Q function

Coherent state, Fock state, cat state and mixture five 5 photons on average

) -, 0 \ 0
cat state |3) + |—f) statistic mixture of |+£3)
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Wigner function
Fock state

vacuum
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Wigner function

Thermal state

vacuum n=1
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Wigner function

Coherent state

vacuum
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Wigner function

Squeezed state

vacuum
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Wigner function

Cat state vs mixture

mixture p = 5 (|6) (8] + |-B8) (~5) cat o< |B) +[—5)
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Wigner function
Cat states

Hélene Perrin - Jean-Michel Raimond Atoms and photons



	Planck 1900

