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Introduction

The fundamental importance of the atom-field interaction problem

I Provides all information we have on the universe except
gravitational waves, which requires (quantum) optics

I Provides the most precise theory so far: QED (ex:
theory/experiment comparisons for α or h/m, search for
variation of constants (α, me/mp. . . )

I Provides the best tests of fundamental quantum physics (ex:
Bell inequalities, non-locality. . . )
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Introduction

The practical importance of the atom-field interaction problem

I Lasers

I Atomic clocks

I Cold atoms and BEC

I Quantum simulation

I Entanglement used as
a resource (quantum
spectroscopy,
quantum
information. . . )

Sr clock

BEC

AF state with
cold fermions
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Outline of this course

Chapter 1: Interaction of atoms with a classical field

1. The harmonically bound electron: a surprisingly successful
model

2. The Einstein coefficients

Hélène Perrin Atoms and photons



Introduction
The harmonically bound electron

Einstein’s coefficients

Outline of this course

Chapter 2: Quantized atom and classical field

1. Interaction Hamiltonian

2. Free atom and resonant field

3. Relaxing atom and resonant field

4. Optical Bloch equations

5. Applications of the optical Bloch equations
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Outline of this course

Chapter 3: Field quantization

1. Field eigenmodes

2. Quantization

3. Field quantum states

4. Field relaxation

Hélène Perrin Atoms and photons



Introduction
The harmonically bound electron

Einstein’s coefficients

Outline of this course

Chapter 4: quantized matter and quantized field

1. Interaction Hamiltonian

2. Spontaneous emission

3. Photodetection

4. The dressed atom

5. Applications of quantum optics (CQED = Cavity Quantum
ElectroDynamics, squeezing for precision measurements,
quantum simulation. . . )
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Online lecture notes

I www-lpl.univ-paris13.fr/bec, following the menu items
Group members / Hélène Perrin

I C. Fabre M2 lecture notes (in French)
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I. A classical model: the harmonically bound electron
1) The model

The simplest classical model for an atom: a single charge
(electron) bound to a force center by an harmonic potential.

I An early atomic theory model (Thomson’s ‘plum pudding’)

I A good guide to identify relevant parameters by dimensional
analysis

I Surprisingly accurate predictions
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A classical model: the harmonically bound electron
Equations of motion

Dynamics

d2r

dt2
+ ω2

0r = 0 (1)

Solution

r = r0 exp(−iω0t) (2)
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Natural units for the Bohr atom
Use the natural units ~, m (electron mass), c : energies in mc2,

frequencies in mc2

~ , times in
~

mc2
= 1.3 10−21 s, lengths in

~
mc

= 3.86 10−13 m

I Bohr radius: orbit with angular momentum mva0 = ~

a0 =
4πε0~2

mq2
=

4πε0~c
q2

~
mc

i.e. a0 =
1

α

~
mc

= 5.3×10−11 m

I We introduced the fine structure constant

α =
q2

4πε0~c
≈ 1

137
(3)

I The binding / ionization energy is the Rydberg constant
Ry = −Etot = Ekin = mv2/2, and ω0 ∼ Ry/~ ∼ 1016 s−1

Ry =
1

2

q2

4πε0a0
=

1

2

~cα
a0

=
α2

2
mc2 v = αc � c , ω0 =

α2

2

mc2

~
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A classical model: the harmonically bound electron
Damping

Damping: radiation reaction. Model: power emitted
by a viscous damping term in the equation of motion.
A reasonable approximation for weak damping.

Larmor formula for radiated power

for non relativistic motion: P =
q2a2

6πε0c3
= mτa2 (4)

where τ =
1

6πε0

q2

mc3
= 6.3× 10−24 s (5)

related to the classical radius of electron re =
q2

4πε0mc2
= α

~
mc

by τ =
2

3

re
c

=
2α

3

~
mc2

N.B. re = 2.8× 10−15 m
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A classical model: the harmonically bound electron
Damping coefficient

friction force: F = −mγv
dissipated power: P = −F · v = mγv2 = mτa2 ∼ mτω2

0v
2

⇒ relevant damping rate γ = ω2
0τ

Modified equation of motion

d2r

dt2
+ γ

dr

dt
+ ω2

0r = 0 (6)

with
γ = ω2

0τ (7)

being the amplitude damping coefficient obtained by equalling the
average dissipated power to the average radiated power (the
energy damping coefficient is 2γ).

Hélène Perrin Atoms and photons



Introduction
The harmonically bound electron

Einstein’s coefficients

Order of magnitude for damping

I Typical transition frequency ω0 =
α2

2

mc2

~
I τ =

2

3

re
c

=
2α

3

~
mc2

Order of magnitude estimate for γ/ω0 = ω0τ :

γ

ω0
= ω0τ =

α3

3
≈ 1.3 10−7 (8)

⇒ weak damping, quasi constant orbits
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I. A classical model: the harmonically bound electron
2) Polarizability

Response to a classical oscillating field E0uz exp(−iωt)

Equation of motion

d2r

dt2
+ γ

dr

dt
+ ω2

0r =
qE0

m
uze
−iωt (9)

Steady-state solution

Position: r = r0 exp(−iωt); Dipole: d = d0 exp(−iωt) with

d0 = qr0 = ε0αcE0uz (10)

where

αc =
q2

mε0

1

ω2
0 − ω2 − iγω

(11)
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A classical model: the harmonically bound electron
Polarizability

N.B.:
q2

mε0ω2
0

= 4πα
~c
m

1

ω2
0

∼ 16π

α3

(
~
mc

)3

= 16πa3
0 Bohr volume

αc =
q2

mε0ω2
0

1

1− ω2/ω2
0 − iγω/ω2

0

1 2 3 4 5

-5

5

10
αc

Im (αc)

ω/ω0

Re (αc)
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I. A classical model: the harmonically bound electron
3) Scattering regimes of incident power

Total power scattered by the atom given by Larmor formula:

P = mτa2 =
1

2
mτω4|r0|2 (12)

or, using mτ/q2 = 1/(6πε0c
3)

P =
|d0|2ω4

12πε0c3
=
|αc |2
12π

ω4

c4
ε0cE

2
0 ∼ α2ε0cE

2
0 (13)

Cross Section
Ratio of this power to the incident power per unit surface
Pi = ε0cE

2
0 /2:

σc =
1

6π

(ω
c

)4
|αc |2 =

8π

3
r2
e

ω4

(ω2
0 − ω2)2 + γ2ω2

(14)
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Light scattering cross section
Three regimes

Cross Section

σc =
8π

3
r2
e

ω4

(ω2
0 − ω2)2 + γ2ω2

1 2 3 4 5

2

4

6

8

10

12σc
resonant

Thomson

Rayleigh ω/ω0
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Light scattering cross section
The three scattering regimes

Rayleigh scattering for ω < ω0 and ω0 − ω � γ

σc =
8π

3
r2
e

ω4

ω4
0

(15)

Blue sky: σc ≈ 10−30 m2, density ρ = 1025 m−3: the attenuation
length is L = 1/ρσc ≈ 100 km

Thomson scattering for ω > ω0 and ω0 − ω � γ

σc =
8π

3
r2
e . (16)

Resonant regime for ω ≈ ω0

σc =
8π

3
r2
e

ω2
0

4(ω0 − ω)2 + γ2
(17)
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A classical model: the harmonically bound electron
Resonant scattering

At exact resonance ω0 = ω:

σc =
8π

3
r2
e

ω2
0

γ2
(18)

with

re
ω0

γ
=

3

2
cτ

1

ω0τ
=

3

4π
λ0 (19)

where λ0 = 2πc/ω0 is the wavelength. Hence

σc =
3

2π
λ2

0 (20)

This model does not apply for high powers: saturation (about 1
mW/cm2). A quantum effect. More on that in next Chapter.
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I. A classical model: the harmonically bound electron
4) Propagation in matter

Apply the model to propagation in matter. Simplifiying hypothesis:

I Consider harmonic plane wave

I Linear response theory

I Dilute matter: no difference between local and global field

Electric displacement

D = ε0E + P

P: density of polarization.
Dilute matter (independent scatterers): linear response
P = ε0χcE with χc = ραc ⇒ D = ε0εrE
εr = 1 + χc = 1 + ραc .
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Dispersion relation

Equation of propagation

∆E +
ω2

c2
εrE = 0 (21)

Dispersion relation

k2 = k2
0 εr (22)

where k0 = ω/c

Refraction index

n =
√
εr = n′ + in′′ (23)
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Refraction index

n′ =
1√
2

√
ε′r +

√
ε′2r + ε′′2r and n′′ =

ε′′r√
2

1√
ε′r +

√
ε′2r + ε′′2r

(24)
Real part: refraction (ordinary index).
Imaginary part: absorption. Density of power released in matter

P = 1
2 Re j0 · E∗0 where j0 = −iωP0.

P =
1

2
Re (−iωP0 · E∗0) =

1

2
Re (−iχc) ε0ω|E0|2 (25)

P =
1

2
ε0ωχ

′′|E0|2 =
1

2
ε0ωρα

′′
c |E0|2 (26)
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A classical model: the harmonically bound electron
Propagation in matter

P =
1

2
ε0ωχ

′′|E0|2 =
1

2
ε0ωρα

′′
c |E0|2 (27)

Imaginary part of polarizability:

α′′c =
q2

mε0

γω

(ω2
0 − ω2)2 + γ2ω2

> 0 (28)

Classical appraoch predicts that power released is always positive,
matter is always absorbing. Laser needs a quantum ingredient.
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II. Einstein’s coefficents
1) Introduction - The coefficients

A phenomenological description of energy exchanges between light
and matter. A very simple description:

I Field only described by its spectral energy density uν .
Number density of photons between ν and ν + dν : uν/hν.
Total energy per unit volume: u =

∫
uν dν

I Matter made of non degenerate two-level atoms, g → e,
energies Eg and Ee with (Ee − Eg ) = hν0. λ0 = c/ν0.

I Number (or density) of atoms in the two levels Πe and Πg ,
normalized to the total atom number (or density ρ) so that
Πe + Πg = 1.

Goal: obtain rate equations for the variations of Πe and uν . We
consider in particular the radiation/matter thermal equilibrium at a
temperature T . For that, three processes come into play:
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Three processes

Spontaneous emission

Deexcitation of e with a constant probability per unit time,
Aeg = Γ.

dΠe

dt

)
spont

= −AegΠe (29)

e

g

Absorption

Transfer from g to e by absorption of photons. Rate proportional
to the photon density (a cross-section approach).

dΠe

dt

)
abs

= Bgeuν0Πg (30)

e

g
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Three processes

Absorption and spontaneous emission are not enough: at infinite
temperature, uν →∞, Πe → 1. Not the prediction of
thermodynamics (Πe = Πg = 0.5). Einstein adds a third process:

Stimulated emission
Transition from e to g and emission of a photon at a rate
proportional to the photon density.

dΠe

dt

)
stim

= −Beguν0Πe (31)

e

g

Einstein’s rate equations

dΠe

dt
= −AegΠe − Beguν0Πe + Bgeuν0Πg (32)
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II. Einstein’s coefficents
2) Relations between the three coefficients

At thermal equilibrium (temperature T )

Πe

Πg
= e(Eg−Ee)/kBT = e−hν0/kBT (33)

kB : Boltzmann constant. And (Planck’s law)

uν0 =
8πhν0

3

c3

1

exp(hν0/kBT )− 1
(34)
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Relations between the three coefficients
In steady state: (Aeg + Beguν0)Πe = Bgeuν0Πg . For T →∞,
uν0 →∞ and Πe/Πg → 1. Neglect spontaneous emission.

Bge = Beg = B (35)

Noting Aeg = A, steady state at a finite temperature T :

A + Buν0 = Buν0

Πg

Πe
= Buν0e

hν0/kBT (36)

Hence

uν0 =
A

B

1

exp(hν0/kBT )− 1
(37)

Comparing with Planck’s law

A

B
=

8πhν0
3

c3
=

8πh

λ3
0

(38)

⇒ only need A = Γ to get all three!
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II. Einstein’s coefficents
3) A consequence of stimulated emission: the laser

Stimulated emission: addition of energy to the incoming wave.
A simple situation: plane wave at frequency ν0 on a thin slice of
atoms. Incoming power per unit surface I, outgoing I + dI.

Πe,ΠgI
input field matter

I + dI
output field

balance: dI ∝ I(Πe − Πg ) = I∆ where ∆ is the population
inversion density:

∆ = Πe − Πg (39)

The power increases when ∆ > 0: gain requires population
inversion.
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Population inversion

Conditions to achieve ∆ > 0

I No thermal equilibrium

I No two-level system (in the steady state)

I Three or four level system

I Case of a four level system (f : ground state, i intermediate,
plus e and g :

I Fast incoherent pumping from f to i

I Fast relaxation from i to e

I Stimulated emission from e to g

I Extremely fast relaxation from g to f

i

e

g

f
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The Laser
Principle

I Gain + feedback = oscillation

I A laser is composed of an amplifying medium (gain) and of an
optical resonant cavity (feedback).

I When the gain exceeds the losses in the feedback, a
self-sustained steady-state oscillation occurs.
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The Laser: A simple model

Captures the main physical ideas without any complication. Forget
about all details and proportionality constants.

Variables
I Population inversion density ∆. If g strongly damped,

∆ = Πe .

I Intra-cavity intensity I (photon density)
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A simple model

Evolution of intensity

dI
dt

= −κI + GI∆ (40)

κ: rate of internal or coupling cavity losses.

Evolution of population inversion

d∆

dt
= Λ− Γ∆− GI∆ (41)

with

I Λ : pumping rate in the upper level e

I Γ : relaxation rate of e (spontaneous emission in modes other
than the cavity one, other sources of atomic losses)
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Steady state: I(G∆− κ) = 0 Λ = ∆(Γ + GI)

Laser off solution
I I = 0 always a solution

I ∆ = Λ/Γ
0.5 1.0 1.5 2.0 2.5 3.0

Λ0.0

0.5

1.0

1.5

2.0

I

Laser on solution
I ∆ = κ/G . Possible only if ∆ < 1 i.e. κ (loss) < G (gain)

I =
1

κ

(
Λ− Γκ

G

)
(42)

I Relevant if I ≥ 0⇒ threshold condition

Λ ≥ Λt =
Γκ

G
(43)
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The Laser: Stability of the solutions

I Λ < Λt : only solution I = 0

I Λ ≥ Λt : two possible solutions, but I = 0 unstable

0.5 1.0 1.5 2.0 2.5 3.0
Λ0.0

0.5

1.0

1.5

2.0

I
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