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Solution of the problem

Sisyphus effect at low saturation
onaJ;=1/2 < J, = 3/2 transition

1 Model system

1.1

Laser field configuration

1. The total field can be written as:

1.2

Ep(z,t) = %So (exei(kz_w”) - ieyei(_’“_“’”) + c.c.)
= %50 ((3_21“’L1”(exeik'Z - ieye_ikz)) + c.c.
= %80 (e‘i“Lt((ex —iey) cos kz +i(e; + iey) sin kz)) + c.c.
= %go\/ﬁe(z)e*i%t + c.c. (1)

The field amplitude is £, = v/2&, and the polarisation is €(z) = coskz e_ —
tsinkz €4 as expected.

. The polarisation is o_ in z = 0, linear along (e, —e,)/V2in z = A\/8, o in 2 = \/4,

linear along (e, + e,)/v/2 in z = 3)\/8, again o_ in z = A/2, etc. There is a strong
polarisation gradient, i.e. the polarisation varies on a short scale with a period \/2.

Dipole force

. We calculate the action of the operator (6(2) : a+) on the two ground states |g, +1/2)

and |g, —1/2):
(e(z) : &*) lg,+1/2) = \}3 cos(kz)le,—1/2) —isin(kz)|e, +3/2), (2)
N 1L
(e(z)-d")lg,~1/2) = cos(kz)le,~3/2) — iz sin(kz)le, +1/2). (3)

The two states calculated above are orthogonal. As A is obtained from the operator
€(z) -d™ and its hermitian conjugate, we deduce the following matrix elements of A
in the basis (|g,—1/2), |g, +1/2)):

1 2
Ay = (9,+1/2|A|g,+1/2) = 3 cos®kz +sinkz =1 — 3 cos® kz, (4)



A = (g,—1/2|A|lg,—1/2) = cos® kz + %sin2 kz=1-— %sin2 kz, (5)
Ao = (g,+1/2[Alg,—1/2) =0=A_,. (6)
The states |g, £1/2) are thus eigenstates of A with the eigenvalues given above.
3. The dipole force is obtained by differentiating the eigenenergies:
Freact =~ 120V E )0 =111 o VE 4. (7)

1.2.1 Dissipative force

For an atom at rest, with a low saturation parameter and with orthogonal polarisations,
the dissipative force is simply the sum of the radiation pressure of both beams. With two
beams with equal intensities, this total force is zero for both internal states.

2 Dynamics of the internal degrees of freedom

2.1 Light shifts in the ground state

1. The light shifts are the eigenvalues of the operator Heg = hd A, which is diagonal in
the basis |g, +1/2). Here hd = hds/2 = hdsg, where sg is the saturation parameter
for a single beam. The light shifts are thus:

Eil/Q(Z) = hésoAii(z) = _gUOA:I::t(Z)- (8)

From the eigenvalues calculated previously, we obtain:
3 3
E10(2) = Uy (—2 + cos? kz> and  E_j/(2) = Uy (—2 + sin? k:z) . (9

2. The mean force is then:

F = U (H+1/2(Z) 2k cos kzsinkz — T1_; /9(2) 2k cos kz sin kz) e,
= kUpM(z)sin2kz e,. (10)

2.2 Optical pumping rate

1. The calculation of the optical pumping rates is the difficult point of this problem...
The time evolution of the population II /2(2) is governed by a rate equation. The
population of the state |g, +1/2) varies due to a gain from the state |g, —1/2), pro-
portional to II_; /5(2), and losses towards |g, —1/2), proportional to I1,;/5(z). The
coeflicients in front of the populations are the optical pumping rates.

The departure rates are directly linked to the eigenvalues of A:

!/

i / 2
[y yp9(2) = T'{g,+1/2|Alg,+1/2) =T (1 — §c082 kz> (11)

I

M a(z) = T'{g—1/2|Alg,—1/2) =T' <1 _ %sinQ k:z) . (12)

2



The arrival rate are more painful to obtain. Let us calculate the arrival rate on state

lg,m).

() =g, +1/20 Y (€;-d7) (e(2) - dT) oy (€(2) - d7) (e - dT)lg, +1/2).
g=—1,0,4+1

(13)
We recall €(z) = coskz e —isinkz €, = coskz e_1 —isinkz €;.

The additional information gives the action of (e, - d*) on |g,m) as a function of the
Clebsh-Gordan coefficient:

(eg-dN)|g,m) = (Je m+q|lJy 1 m q)|le,m +¢q), and,

(g, ml(ey-d7) = (Je m+qlJg 1 m g)(e,m +ql.

Now, as €*(z) = coskz € +isinkz €], we have

(e()-d7) le;m +q) =

= coskz (efl-a_) le,m + q) + isinkz (e{a_> le,m + ¢q) (14)
= coskz (Je m+q|Jg 1 m+q+1,-1)[gm+qg+1)
+ dsinkz (Je m+gq|lJg 1 m+q—1,1)|g,m+q—1). (15)

On the other side:

{e,m + q (e(z) -&*) =

= coskz (e,m + q| (6_1 . &"') —isinkz (e,m + q| (61 : 51+) (16)
= coskz (Je m+q|lJg1m+q+1,—-1)(g,m+q+1]
isinkz (Je m+q|lJg 1 m+q—1,1)(g,m +q —1|. (17)

The o4, operator gives the populations II. when taken between the same |g,m)
states, and 0 otherwise. The cross terms then disappear, and the final result is:

I (z)=T Z (Je m+q|Jy; 1m g)? x
q=-1,0,+1

(0052 kz (Jem4qlJy Lm+q+1, 1) 041
tsin?kz (Jo m+qlJy Tm+q—1,1) Mg 1) (18)

Some of these terms are zero, if [m+ ¢+ 1| > 1/2. For m = 41/2, we obtain for the
three terms:

g=1: T x1x (0+sin?kz x 1 x I1I}) = I'TL; sin® kz.
q=0: I"x 2 x (0+sin?kz x 1 x II_) = 2I'II_ sin? k=.
qg=—1: T"x & x (cos? kz x & x I} + 0) = §I"IL; cos® kz.
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It corresponds to the three ways of having an arrival to |g, 1/2): starting from |g,1/2)
and going back via the excited state |e,3/2): Clebsh 1 x 1; starting from |g, —1/2)

and arriving to |g,1/2) through |e,1/2): Clebsh 1 x %; starting from [g,1/2) and

going back via the excited state |e, —1/2): Clebsh £ x 3.
The total arrival rate to |g,1/2) is finally

"

I (z) =T ((1 - SCOSQ k)T (2) + %sinQ k:zH(z)) . (19)

The same reasoning gives the arrival rate to the state |g, —1/2):

"

L'y jo(2) = I’ ((1 — gsim2 kz)II_(z) + §COS2 sz+(z)) . (20)

. For the population I1;(2) we get the following differential equations:

dIl 8 2 / 2

—t - r <(1 — —cos? kz)IT; (2) + = sin? k‘zH(z)) -T (1 — Zcos? k‘z) I (z)
dt 9 9 3

dIly _ 200 (o 2 2

- = §F (sm kz II_(z) — cos” kz H+(z)) . (21)

We define v = 2I" = 25oI' and recall that II,(z) + II_(z) = 1, and M(z) =
Iy (2) = II_(z) = 2[4 (2) — 1. We get:

% = - <0032 kz T, (2) — sin® kz H_(z)> = — (H+(z) _ gin? kz) (22)
% = - (M(z) +1 — 2sin? ka) = —y (M(2) + cos(2kz)) . (23)

We recover the proposed equation, with 7p = ~!. This time is the typical pumping
time between states |g,1/2) and |g, —1/2), i.e. the time to reach the steady state.

. In the steady state, % =0 and M(z) = — cos(2kz) = 2sin? kz — 1. The population
in the two ground states are then IT, (z) = sin? kz and I1_(z) = cos? kz. There is a
correlation between populations and light shifts: the population is always largest in
the state which has a lower potential energy.

. For a kinetic energy much larger than the well depth (Mv?/2 > Up), the atoms are
not trapped. With a velocity kv > I, it covers several wells before being pumped.
The condition kv <« I' means that the atom doesn’t move during the pumping
process, which can be considered as instantaneous. A pumping process occurs more
likely when the atom is at the top of a hill, which removes an energy of order Uy
with a rate . This gives an idea of the cooling power in Sisyphus cooling.

The order of magnitude of the final temperature is the well depth: kT ~ Uy ~
72 /|8| for large negative detunings.



3 Cooling mechanism for a moving atom

3.1

3.2

Characteristic times

. The time scale of the evolution of the internal variables is 7p = 9/(2vs0).

At the bottom of on the the wells, say, for the state |g, —1/2) around z = 0, the
energy can be approximated by E_(z) ~ —3Uy/2 = k?Uyz?. This corresponds to a
harmonic oscillator MQ2,.2?/2 with a frequency

2U() 4h|5’80
Qosc = —_— = . 24
P P T 2

The typical external time is then te = Q7.

osc*

N.B. The oscillation frequency can be written equivalently as A2osc = 2v/UgFErec-

The assumption of hoping regime allows to consider that the atoms move slowly as
compared to the pumping time. In this case, we can eliminate the internal variables
adiabatically from the equation of motion. This semi-classical treatment allows the
introduction of a force and a diffusion in momentum space, as in the case of Doppler
cooling.

The hoping regime

. With the assumption tjy; < text We can write z = vt (constant velocity) on the time

scale Tp.

The differential equation for M(t) is now:

d 1 1
The forced solution is:
1 2ikvt
— _ - 2tkv 9
M(t) Re T 2ik7pve (26)
or: . /
V/ Ve .
= cos2kz— —1°  sin2k=. 2
M(t) T (/)2 cos 2kz T (0)00)? sin 2kz (27)

The force averaged over one period F,(v) = kUgM (t) sin(2kz) is given by:

kUy  v/v. v
) = — - —qe— " 28
F=(v) 2 1+ (0/u)? 1+ (v/ve)? (28)
with 5
ag = kK2 Ugtp = —3hk2f. (29)

For velocities v < v, we obtain a friction force with a friction coefficient ag.



3.3

The friction coefficient ag doesn’t depend on the laser intensity (the trap depth
decreases when sg decreases, but the pumping rate is lowered accordingly and the
two effects compensate exactly). At large detuning and low intensity, ag is always
larger than the Doppler friction coefficient ap, Sisyphus cooling being then more
efficient. v, is the capture velocity, at which the force is largest.

Equilibrium temperature

. At low saturation, we have seen in lecture 2 that Dp ~ gsoh%? for s = 2sy.

The spatial average Dyg;jp, of the diffusion coefficient is

52

T 50 (30)

3
Dyip = Zh2k2

At large detunings, Dgip > Dpg. The limit temperature of 1D Sisyphus cooling is

then:

D 1 3 hO?
kpT = — ~ —~hésg = ~Uy ~ —r.
BE = s T 1T 80T g

~

(31)



