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Hélène Perrin and Pierre Desbiolles

Problem: Sisyphus effect at low saturation

on a Jg = 1/2 ↔ Je = 3/2 transition

1 Model system

In this problem, we study the Sisyphus effect for an atom with two Zeeman levels in
the ground state (Jg = 1/2), in the presence of a strong polarisation gradient of light. We
consider a transition Jg = 1/2 ↔ Je = Jg + 1 = 3/2, the Clebsch-Gordan coefficient being
given below. The light intensity is low, so that the saturation parameter is small (s ≪ 1).
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Figure 1: 1/2 ↔ 3/2 transition.

1.1 Laser field configuration

The laser field consists of two plane waves propagating in opposite directions along
the z axis. Their polarisation are orthogonal, along ex and ey), and their amplitude are
equal. More specifically, we write the two fields as:

E+ =
E0

2
ex

(

e−iωt+ikLz + c.c.
)

and E− = −E0

2
ey

(

ie−iωt−ikLz + c.c.
)

(1)

1. Write the total field EL(z, t) as:

EL(z, t) = E+
L(z)e−iωt + c.c. (2)

where E+
L (z) = ELǫ(z)/2, with EL =

√
2E0, and the polarisation ǫ is given by

ǫ(z) = cos kz ǫ− − i sin kz ǫ+. The polarisations ǫ+ and ǫ− are the standard basis
vectors corresponding to σ+ and σ−:

ǫ± = ∓ 1√
2
(ex ± iey) (3)

2. Make a diagram illustrating the variation of the polarisation as a function of z.
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1.2 Dipole force

The dipole force Fdip is given by:

Fdip = −
∑

α

(∇Eα)Πα (4)

where Πα is the population in the eigenstate |gα〉 of energy Eα of the effective hamiltonian:

Heff =
h̄Ω2

1/4

δ2 + (Γ2/4)
δΛ(r) = h̄δ

′

Λ(r). (5)

The total Rabi frequency (for the two beams) is defined as h̄Ω1 = −DEL and the operator
Λ(r) is:

Λ(r) =
(

ǫ
⋆(r) · d̂−

) (

ǫ(r) · d̂+
)

(6)

where d̂ is the reduced dipole operator (see the additional information file).

1. What is the effect of the operator
(

ǫ(r) · d̂+
)

on the states |g,+1/2〉 and |g,−1/2〉?

2. Show that in the case Jg = 1/2 the states |g,±1/2〉 are the eigenstates of Λ(r), and
give the corresponding eigenvalues.

3. Give the expression of Fdip as a function of Π±1/2 and E±1/2, populations and
energies of the states |g,±1/2〉.

1.3 Dissipative force

Explain why the dissipative force is zero for an atom with zero velocity, for any internal
substate of the groundstate.

2 Dynamics of the internal degrees of freedom

2.1 Light shifts in the ground state

1. Show that the light shifts of the groundstates |g,±1/2〉 are given by:

E+1/2(z) = U0

(

−3

2
+ cos2 kz

)

and E−1/2(z) = U0

(

−3

2
+ sin2 kz

)

(7)

where U0 = −2h̄δs0/3 and s0 is the saturation parameter for one beam. Give a
graph of E±1/2 as a function of z.

2. Deduce the mean force F as a fonction of the population difference M(z) = Π+1/2(z)−
Π−1/2(z).
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2.2 Optical pumping rate

We now need to calculate M(z). The population in the two groundstates |g,+1/2〉 and
|g,−1/2〉 evolve due to optical pumping via the excited states.

1. The departure rates from the states |g,±1/2〉 are given by:

Γ
′

±1/2(z) = Γ
′〈g,±1/2|Λ|g,±1/2〉 (8)

where Γ
′

= Γs0.

On the other hand, the arrival rates to |g,±1/2〉 are:

Γ
′′

±1/2(z) = Γ
′〈g,±1/2|

∑

q=−1,0,+1

(ǫ⋆
q · d̂−)

(

ǫ(r) · d̂+
)

σgg

(

ǫ
⋆(r) · d̂−

)

(ǫq · d̂+)|g,±1/2〉

(9)
in the standard basis where ǫ0 = ǫz (π polarisation) and ǫ±1 = ǫ±.

Calculate the departure and arrival rates for the two groundstates.

2. Deduce that M(z) obeys the following differential equation:

d

dt
M(z) = − 1

τP
[M(z) + cos 2kz] (10)

where τP = 9/(2Γs0). What is the physical meaning of this time?

3. Determine the populations Π±1/2(z) in the steady state. Indicate the result on the
graph of the light shifts as a function of z.

4. Give a qualitative explanation of Sisyphus cooling in the limit where the kinetic en-
ergy is much larger than the potential depth (Mv2/2 ≫ U0), and the atomic velocity
is such that Γ ≫ kv ≫ Γ

′

. Give an order of magnitude of the limit temperature T
that can be obtained in this large detuning limit. How does T depend on the laser
intensity and detuning?

3 Cooling mechanism for a moving atom

3.1 Characteristic times

1. What is the characteristic time for the evolution of the internal variables of the
atoms tint.

2. To evaluate the characteristic time for the external degrees of freedom, we assume
that the atomic energy is low enough for the atom to be trapped in a well. What is
then the time text associated to the oscillations in the well?

3. We assume by now that tint ≪ text (hoping regime). Explain why the dynamics can
be explained in a simplified way.
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3.2 The hoping regime

1. We assume now that the atomic position is linked to time by z = vt on the timescale
of optical pumping. Why is this assumption justified?

2. Give the differential equation for M(t). Find the forced oscillation solution, using
the critical velocity vc = 1/(2kτP ).

3. Determine the mean force Fz(v) averaged over a spatial period λ/2. Show that it
is a friction force at low velocities (low with respect to what?).

4. Compare the friction coefficient αS with the one which appears in Doppler cooling
αD.

3.3 Equilibrium temperature

1. Recall the diffusion coefficient in momentum space associated to spontaneous emis-
sion DR at low saturation (s0 ≪ 1).

2. The diffusion coefficient in momentum space associated to the dipole force is:

Ddip = 2h̄2k2 δ2

Γ
s0 sin4(2kz) (11)

Give its spatial average.

3. Compare the two D coefficients at large detuning |δ| ≫ Γ. Deduce the limit tem-
perature for Sisyphus cooling.

4. Check that the condition on the velocity for considering the hoping regime is com-
patible with the low velocity limit to get a linear friction force F z(v).
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