Problem: Sisyphus effect at low saturation on a $J_g=1/2 \leftrightarrow J_e=3/2$ transition

1 Model system

In this problem, we study the Sisyphus effect for an atom with two Zeeman levels in the ground state $(J_g = 1/2)$, in the presence of a strong polarisation gradient of light. We consider a transition $J_g = 1/2 \leftrightarrow J_e = J_g + 1 = 3/2$, the Clebsch-Gordan coefficient being given below. The light intensity is low, so that the saturation parameter is small $(s \ll 1)$.

Figure 1: $1/2 \leftrightarrow 3/2$ transition.

1.1 Laser field configuration

The laser field consists of two plane waves propagating in opposite directions along the z axis. Their polarisation are orthogonal, along \mathbf{e}_x and \mathbf{e}_y), and their amplitude are equal. More specifically, we write the two fields as:

$$\mathbf{E}_{+} = \frac{\mathcal{E}_{0}}{2} \, \mathbf{e}_{x} \left(e^{-i\omega t + ik_{L}z} + c.c. \right) \quad \text{and} \quad \mathbf{E}_{-} = -\frac{\mathcal{E}_{0}}{2} \, \mathbf{e}_{y} \left(ie^{-i\omega t - ik_{L}z} + c.c. \right)$$
(1)

1. Write the total field $\mathbf{E}_L(z,t)$ as:

$$\mathbf{E}_L(z,t) = \mathbf{E}_L^+(z)e^{-i\omega t} + \text{c.c.}$$
 (2)

where $\mathbf{E}_L^+(z) = \mathcal{E}_L \epsilon(z)/2$, with $\mathcal{E}_L = \sqrt{2}\mathcal{E}_0$, and the polarisation ϵ is given by $\epsilon(z) = \cos kz \ \epsilon_- - i \sin kz \ \epsilon_+$. The polarisations ϵ_+ and ϵ_- are the standard basis vectors corresponding to σ^+ and σ^- :

$$\epsilon_{\pm} = \mp \frac{1}{\sqrt{2}} (\mathbf{e}_x \pm i \mathbf{e}_y) \tag{3}$$

2. Make a diagram illustrating the variation of the polarisation as a function of z.

1.2 Dipole force

The dipole force \mathcal{F}_{dip} is given by:

$$\mathcal{F}_{\text{dip}} = -\sum_{\alpha} (\nabla E_{\alpha}) \Pi_{\alpha} \tag{4}$$

where Π_{α} is the population in the eigenstate $|g_{\alpha}\rangle$ of energy E_{α} of the effective hamiltonian:

$$H_{\text{eff}} = \frac{\hbar\Omega_1^2/4}{\delta^2 + (\Gamma^2/4)}\delta\Lambda(\mathbf{r}) = \hbar\delta'\Lambda(\mathbf{r}). \tag{5}$$

The total Rabi frequency (for the two beams) is defined as $\hbar\Omega_1 = -\mathcal{D}\mathcal{E}_L$ and the operator $\Lambda(\mathbf{r})$ is:

$$\Lambda(\mathbf{r}) = \left(\boldsymbol{\epsilon}^{\star}(\mathbf{r}) \cdot \hat{\mathbf{d}}^{-}\right) \left(\boldsymbol{\epsilon}(\mathbf{r}) \cdot \hat{\mathbf{d}}^{+}\right) \tag{6}$$

where $\hat{\mathbf{d}}$ is the reduced dipole operator (see the additional information file).

- 1. What is the effect of the operator $(\epsilon(\mathbf{r}) \cdot \hat{\mathbf{d}}^+)$ on the states $|g, +1/2\rangle$ and $|g, -1/2\rangle$?
- 2. Show that in the case $J_g = 1/2$ the states $|g, \pm 1/2\rangle$ are the eigenstates of $\Lambda(\mathbf{r})$, and give the corresponding eigenvalues.
- 3. Give the expression of \mathcal{F}_{dip} as a function of $\Pi_{\pm 1/2}$ and $E_{\pm 1/2}$, populations and energies of the states $|g, \pm 1/2\rangle$.

1.3 Dissipative force

Explain why the dissipative force is zero for an atom with zero velocity, for any internal substate of the groundstate.

2 Dynamics of the internal degrees of freedom

2.1 Light shifts in the ground state

1. Show that the light shifts of the groundstates $|g,\pm 1/2\rangle$ are given by:

$$E_{+1/2}(z) = U_0\left(-\frac{3}{2} + \cos^2 kz\right)$$
 and $E_{-1/2}(z) = U_0\left(-\frac{3}{2} + \sin^2 kz\right)$ (7)

where $U_0 = -2\hbar \delta s_0/3$ and s_0 is the saturation parameter for one beam. Give a graph of $E_{\pm 1/2}$ as a function of z.

2. Deduce the mean force \mathcal{F} as a function of the population difference $\mathcal{M}(z) = \Pi_{+1/2}(z) - \Pi_{-1/2}(z)$.

2.2 Optical pumping rate

We now need to calculate $\mathcal{M}(z)$. The population in the two groundstates $|g, +1/2\rangle$ and $|g, -1/2\rangle$ evolve due to optical pumping via the excited states.

1. The departure rates from the states $|g,\pm 1/2\rangle$ are given by:

$$\Gamma'_{\pm 1/2}(z) = \Gamma'\langle g, \pm 1/2 | \Lambda | g, \pm 1/2 \rangle \tag{8}$$

where $\Gamma' = \Gamma s_0$.

On the other hand, the arrival rates to $|g,\pm 1/2\rangle$ are:

$$\Gamma_{\pm 1/2}''(z) = \Gamma'\langle g, \pm 1/2 | \sum_{q=-1,0,+1} (\boldsymbol{\epsilon}_q^* \cdot \hat{\mathbf{d}}^-) \left(\boldsymbol{\epsilon}(\mathbf{r}) \cdot \hat{\mathbf{d}}^+ \right) \sigma_{gg} \left(\boldsymbol{\epsilon}^*(\mathbf{r}) \cdot \hat{\mathbf{d}}^- \right) (\boldsymbol{\epsilon}_q \cdot \hat{\mathbf{d}}^+) |g, \pm 1/2\rangle$$
(9)

in the standard basis where $\epsilon_0 = \epsilon_z$ (π polarisation) and $\epsilon_{\pm 1} = \epsilon_{\pm}$.

Calculate the departure and arrival rates for the two groundstates.

2. Deduce that $\mathcal{M}(z)$ obeys the following differential equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{M}(z) = -\frac{1}{\tau_P}[\mathcal{M}(z) + \cos 2kz] \tag{10}$$

where $\tau_P = 9/(2\Gamma s_0)$. What is the physical meaning of this time?

- 3. Determine the populations $\Pi_{\pm 1/2}(z)$ in the steady state. Indicate the result on the graph of the light shifts as a function of z.
- 4. Give a qualitative explanation of Sisyphus cooling in the limit where the kinetic energy is much larger than the potential depth $(Mv^2/2 \gg U_0)$, and the atomic velocity is such that $\Gamma \gg kv \gg \Gamma'$. Give an order of magnitude of the limit temperature T that can be obtained in this large detuning limit. How does T depend on the laser intensity and detuning?

3 Cooling mechanism for a moving atom

3.1 Characteristic times

- 1. What is the characteristic time for the evolution of the internal variables of the atoms t_{int} .
- 2. To evaluate the characteristic time for the external degrees of freedom, we assume that the atomic energy is low enough for the atom to be trapped in a well. What is then the time t_{ext} associated to the oscillations in the well?
- 3. We assume by now that $t_{\text{int}} \ll t_{\text{ext}}$ (hoping regime). Explain why the dynamics can be explained in a simplified way.

3.2 The hoping regime

- 1. We assume now that the atomic position is linked to time by z = vt on the timescale of optical pumping. Why is this assumption justified?
- 2. Give the differential equation for $\mathcal{M}(t)$. Find the forced oscillation solution, using the critical velocity $v_c = 1/(2k\tau_P)$.
- 3. Determine the mean force $\overline{\mathcal{F}_z(v)}$ averaged over a spatial period $\lambda/2$. Show that it is a friction force at low velocities (low with respect to what?).
- 4. Compare the friction coefficient α_S with the one which appears in Doppler cooling α_D .

3.3 Equilibrium temperature

- 1. Recall the diffusion coefficient in momentum space associated to spontaneous emission D_R at low saturation $(s_0 \ll 1)$.
- 2. The diffusion coefficient in momentum space associated to the dipole force is:

$$D_{\rm dip} = 2\hbar^2 k^2 \frac{\delta^2}{\Gamma} s_0 \sin^4(2kz) \tag{11}$$

Give its spatial average.

- 3. Compare the two D coefficients at large detuning $|\delta| \gg \Gamma$. Deduce the limit temperature for Sisyphus cooling.
- 4. Check that the condition on the velocity for considering the hoping regime is compatible with the low velocity limit to get a linear friction force $\overline{\mathcal{F}_z(v)}$.