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Outline of the course

Lecture 1: Bose-Einstein condensation, superfluid
hydrodynamics and collective modes

Lecture 2: Adiabatic potentials for confining quantum gases

Lecture 3: Superfluid dynamics at the bottom of a bubble trap
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Tuning quantum gases

Quantum gases benefit from a wide range of tunable parameters:

temperature in the range 10 nK – 1 µK

interaction strength: scattering length a

dynamical control of the confinement geometry

periodic potentials (optical lattices)

low dimensional systems accessible (1D, 2D)

several internal states or species available

easy optical detection
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Collective modes as a probe of the system

This lecture: exploring the collective modes at the bottom of the
bubble trap:

support temperature in the range 10 nK – 1 µK

interaction strength controlled by confinement

dynamical control of the confinement geometry

periodic potentials (optical lattices)

low dimensional systems accessible (1D, 2D)

several internal states or species available

easy optical detection
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Outline of the course

1 The two-dimensional Bose gas

2 Overview of the collective modes

3 The monopole mode as a probe of the Equation Of State

4 The scissors mode as a probe of superfluidity

5 Summary & prospects
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Confining to two dimensions
Prepare a 2D Bose gas

Harmonic trap Vext(x , y , z) = 1
2Mω2

xx
2 + 1

2Mω2
yy

2 + 1
2Mω2

z z
2

2D gas: compress strongly the transverse direction (z)
ωz � ωx ,y such that µ, kBT � ~ωz : frozen along z

Ground state of size az =
√

~/Mωz

a
z xy

Two cases depending of the ratio a/az where a is the 3D
scattering length.
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Case 1: The quasi two-dimensional Bose gas: az > a
Collisions remain 3D

ψ(r) = ψ⊥(r⊥)φz(z) with −~2∂2
zφ+ 1

2mω
2
z z

2φ(z) = ~ωz
2 φ(z)

Plug into GPE:

ψ⊥

{
µφ(z)−

[
− ~2

2M
4zφz +

1

2
mω2

z z
2φz(z)

]}
=[

− ~2

2M
4⊥ψ⊥ + V (r⊥)ψ⊥

]
φ(z) + g |ψ⊥|2ψ⊥|φ(z)|2φ(z)

Average over the z degree of freedom:
∫
φ(z)∗ × . . .

2D GPE µ2ψ⊥ = − ~2

2M
4⊥ψ⊥ + V (r⊥)ψ⊥ + g2|ψ⊥|2ψ⊥

where µ2 = µ− 1

2
~ωz and g2 = g

∫
|φ(z)|4dz =

g√
2πaz

Dimensionless interaction g2 = ~2

M g̃ with g̃ =
√

8π
a

az
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Case 2: Exotic case: az < a
True 2D collisions

Collisions occur in 2D, scattering length a2D ' 2aze
−
√

π
2

az
a 6= 0

Renormalization of the interaction constant: g2 × f

(
a

az
, na2

2D

)
Coupling ‘constant’ depends on atomic density!

Modified EOS: µ(n) 6= g2n ⇒ quantum anomaly

g2D > 0 possible for small az even if a < 0

confinement-induced
resonance for a < 0

[Petrov, Holzmann, Shlyapnikov

(2000)]

In the following we consider essentially case 1 with g̃ =
√

8πa/az .
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The two-dimensional Bose gas
2D: A marginal dimension

2D is a very special case! Logs and topological phase transitions

• Scaling symmetry and universality

kinetic energy ∝ k2, interactions ∝ 1/r2,
integrand k dk ⇒ critical dimension with
Log divergences

no length scale: dimensionless interaction
strength g = ~2

M g̃

EOS depends only on α = µ/kBT :
D = f (α, g̃) [ENS,Chicago]

psd D

scaled µ: (α− αc)/g̃

[Chin et al. 2011]
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The two-dimensional Bose gas
2D: A marginal dimension

2D is a very special case! Logs and topological phase transitions

• 2D homogeneous case No long range order/BEC
(Hohenberg–Mermin–Wagner theorem), but a Kosterlitz–Thouless
transition to a superfluid state below TBKT, relying on
vortex-antivortex pairing. Universal jump of the superfluid density.
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FIG. 1. The shift in period, AP, and dissipation Q '
are shown as a function of temperature at the super-
Quid transition.

0.00
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Temperoture (K j
1.22 1.23

porous Vycor glass, ' exhibit any excess dissipa-
tion associated with the superfluid transition.
The peak in dissipation in the present experiment
points to a fundamental difference between onset
phenomena in two- and three-dimensional super-
fluids.
The behavior in the two-dimensional fluid as

seen in our experiment can be understood in
terms of the dynamic theory of Ambegaokar,
Halperin, Nelson, and Siggia (AHNS). ' In their
theory, as well as in the calculation of Huberman,
Myerson, and Doniach, ' the dissipation is asso-
ciated with the diffusive motion of two-dimension-
al vortices driven by the oscillating superf low
The dynamic theory given by AHNS (Ref. 6) is

directly applicable to the data in the high-fre-
quency regime of the present experiment.
In these experiments we have varied the oscilla-

tor amplitude by a factor greater than 100. At
low amplitudes, where the superfluid velocity is
less than 10 ' cm/sec, we find that the period
and Q ' are amplitude independent, while at larg-
er velocities nonlinear effects set in, the transi-
tion region and dissipation peak are broadened.
In Fig. 2, we display, on an expanded tempera-

ture scale, a set of low-amplitude data obtained
in the neighborhood of the transition. The solid
curves drawn through the data represent a fit'
of the AHNS theory to these data. The gross fea-
tures of the curves are controlled by the choice
for the transition temperature, T„and the value
for the jump in the superfluid mass per unit area,

FIG. 2. The reduced period shift, 26P/P, and dis-
sipation Q are shown for a superQuid transition tem-
perature of 1.215 K. The solid lines are fits using the
dynamic theory of AHNS (Ref. 6) and the dashed curve
is the result of the static theory.

p, (T, ), at T, . These quantities appear in the
expression for the superfluid density near the
transition given by Kosterlitz and Thouless for
the static film:

The quantity, b, in Eq. (1) determines the strength
of the square-root cusp in the static theory. The
curves marked dynamic theory in Fig. 2 are
based on the linear-response calculation described
in Ref. 6. In brief, the reduced shift in period,
2~/P, and the superfluid dissipation Q ' are
related to a frequency-dependent dielectric con-
stant & by

2aP/P=(A/M)p, (T, ) Re(e ')
and

The real part of e is taken as due to bound pairs
according to Eq. (9a) of AHNS. It is calculated
by a numerical integration of the Kosterlitz re-
cursion relations. 4 For the imaginary part of e
contributions due to bound pairs, free vortices,
and a constant background (to account for the dis-
sipation remaining well below the transition) are
added together. In addition to the three param-

1728

−→

Bishop and Reppy

[ENS-CdF, NIST, Chicago, Palaiseau, Seoul, Cambridge...]

2016 Nobel prize in physics to Haldane, Kosterlitz and Thouless
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The two-dimensional Bose gas
2D: A marginal dimension

• trapped gas V (r):

BEC recovered in a harmonic trap (finite size helps)

BKT still relevant within local density approximation (LDA).
BEC-BKT interplay [Cambridge]

replace
µ by µloc(r) = µ0 − V (r),
α by αloc(r) = α0−V (r)/kBT

μ�

�(�)

μ���(�)

�

BKT superfluid phase within LDA

20

ncλ
2

0
rcβ

1/2 10

n
(r

)λ
2 , ρ

s(
r)

λ
2  

rβ1/2

from Holzmann & Krauth, PRL 2008

SF ‘jump’
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The two-dimensional Bose gas
2D: A marginal dimension

2D is a very special case! Logs and topological phase transitions

Summary:

ideal interacting

homogeneous no BEC, no SF BKT SF [ENS-CdF]

trapped BEC, no SF BEC + BKT within LDA

↔

BEC-BKT interplay [Cambridge]
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Experimental implementation
rf-induced adiabatic potentials – the dressed quadrupole trap

Adiabatic potentials for rf-dressed atoms: dressed quadrupole trap
[reviews Garraway/Perrin: JPB 2016 and Adv.At.Mol.Opt.Phys. 2017]

Atoms are confined to an isomagnetic surface of a quadrupole field.

smooth potentials (magnetic fields with large coils)

strong confinement to the surface: ω⊥ ∼ 2π × 1− 2 kHz

geometry (r0, xy -anisotropy) can be fine-tuned dynamically

temperature adjusted with a (weak) rf knife (30 – 200 nK)

side view (isopotentials):
top-view:

a 2D quantum gas
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Collective modes of the quasi-2D Bose gas

Overview of the collective modes
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Reminder for a 2D trapped Bose gas
Excitation spectrum and collective modes

Collective modes for the isotropic 2D gas: n, m are good quantum

numbers: ω(n,m) = ω0

[
2n2 + 2n|m|+ 2n + |m|

]1/2

m
- dipole mode
n = 0,m = 1, both
superfluid and thermal:
centre of mass
oscillation: clock

- monopole n = 1,m = 0:
superfluid and thermal
signature of the EOS

- quadrupole n = 0,m = ±2
signature of superfluidity

- scissors for ωx 6= ωy

signature of superfluidity
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Expected collective modes in an anisotropic trap
From Bogolubov diagonalisation of an idealised case

Bogolubov modes computed numerically for the 2D gas in a
harmonic anisotropic trap ωx , ωy :

m n [0.998] o [1.332] p [1.552]

q [1.674] r [1.988] s [2.024] t [2.356]

u [2.366] v [2.438] w [2.697] x [2.701]

2 dipoles (ωx , ωy ),
quadrupole-like (ωQ),
scissors
(ωS =

√
ω2
x + ω2

y ), 4 more

modes of higher order
symmetry and then
monopole-like (ωM)
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Overview of low energy collective modes
Exciting low energy collective modes

A BEC prepared in 3D trap and transferred quickly into the 2D
rf-dressed quadrupole trap, whose axes are also suddenly rotated.
Several modes are excited during this process.

excited cloud

2D trap frequencies:
ωx = 2π × 33 Hz,
ωy = 2π × 44 Hz

133 images
taken during 100 ms, after
various holding times.
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Overview of the Bogolubov modes
Principal component analysis

Analysis of the correlations between pixels allows to recover the
collective modes.

average picture

dipole mode x

dipole mode y

monopole-like

scissors

quadrupole-like

R. Dubessy et al., Fast Track Comm. of New J. Phys. 16, 122001

(2014) + video abstract.
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Overview of the Bogolubov modes
Principal component analysis

Analysis of the correlations between pixels allows to recover the
collective modes.

average picture

dipole mode x

serve as a clock
for ωx , ωy

dipole mode y

monopole-like
EOS

scissors
superfluidity

quadrupole-like

R. Dubessy et al., Fast Track Comm. of New J. Phys. 16, 122001

(2014) + video abstract.
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The monopole mode

Monopole mode and Equation of State

µ(n) ∝ nγ , γ =?
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The monopole mode in an isotropic harmonic trap
A way to study the Equation Of State

isotropic harmonic 2D trap, frequency ω

monopole probes the compressibility ⇒ ΩM is related to the
2D EOS µ(n):

ΩM =
√

2(2 + ε)ω with ε =
nµ′′(n)

µ′(n)

cf Rudi Grimm’s expt with fermions [Altmeyer 2006]

Ex: 2D weakly interacting gas: µ(n) = gn⇒ ΩM = 2ω

Ex: quantum anomaly due the beaking of scaling symmetry:
g̃/(16π) positive shift [Olshanii 2010]
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The monopole mode in an isotropic harmonic trap
Quantum anomaly Olshanii, Perrin, Lorent, PRL 2010

isotropic harmonic 2D trap, frequency ω

 Quantum anomaly in 2D bosons 

An example of a quantum anomaly 
in the physics of cold atomic gases 

Maxim Olshanii, Hélène Perrin, and Vincent Lorent 
Department of Physics, University of Massachusetts Boston  

Laboratoire de Physique des Lasers, Université Paris 13 and CNRS. 

Financial Support: 

Introduction 
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Proposed experimental implementation 

2D trap: quadrupole trap of vertical axis + vertical blue-detuned lattice. Load atoms 
in a well below the magnetic zero.  Anisotropy should be avoided (see paper for an 
estimate). Excitation by a change in magnetic field bias and gradient. 

References 

What is a quantum anomaly? 
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Castin-Dum ansatz: 

𝑛 𝒓, 𝑡 =   
1

𝜆 𝑡 ଶ 𝑛 1 −
𝑟

𝜆 𝑡 𝑅

ଶ
 

 
The cloud size oscillates between 
𝑅𝜆୫୧୬ and 𝑅𝜆୫ୟ୶. 
Aspect ratio 𝐴𝑅ఒ is defined as 

𝐴𝑅ఒ =   
ఒౣ౮ିఒౣ
ఒౣ౮ାఒౣ

= ఒౣ౮
మ ିଵ
ఒౣ౮
మ ାଵ

= ఠబିఠ
ఠబାఠ

 . 

Corresponding anomaly at this 

amplitude: 𝛿ఒ =
ఋఠ
ଶఠ

. 

 Detection with a beat note 

Empirical manifestation of the anomaly: for 2D bosons in a harmonic trap the 
frequency Ω of small-amplitude monopole excitation is shifted as 

Shift of the monopole frequency 

Ω = 2𝜔 + 𝛿𝜔   where   ఋఠ
ଶఠ

≈ ଵ
ସ గ

యವ
఼

   in the limit 𝑎ଷ ≪ 𝑎ୄ. 

 Excite both the dipole (at 𝜔 ) and 
monopole modes:  Δ𝑥 and 𝜔 < 𝜔. 

Measure 𝑥ଶ    : it provides a beat note 
between Ω and 2𝜔, at 𝛿𝜔. 

With proper choice for Δ𝑥, start with a 
node in the beating amplitude.  

The initial slope of the envelope is 
ఋഊ
ଵଶ

ఠబ
ఠ
− ఠ

ఠబ
, giving 𝛿ఒ =

ఋఠ
ଶఠ.  

Classical 
theory with a 
symmetry 

Quantum divergent 
theory, symmetry 
preserved 

Quantum-regular 
theory, symmetry 
BROKEN canonical 

quantization 
regularization 

Pitaevskii-Rosch symmetry: Classical Field Theory (CFT) for 2D 
bosons in a harmonic trap 

Scaling invariance in 2D in the CFT: 𝐻 = 𝐻 +  𝐻ூ,    𝐻trap,    𝑄  form a closed algebra 
SO 2,1  

Manifestation of the symmetry: amplitude-independent frequency of 2ωHO of the 
monopole mode, absence of damping for this mode. (Dalibard 2002) 

𝑝ଶ

2𝑚    
⃗→ఒ⃗

      
1
𝜆ଶ

𝑝ଶ

2𝑚                                                                       

𝑔𝛿ଶ 𝑟ଵ − 𝑟ଶ     
⃗→ఒ⃗

      
1
𝜆ଶ 𝑔𝛿ଶ 𝑟ଵ − 𝑟ଶ

 

trap:    ଵ
ଶ
𝑀𝜔ଶ𝑟ଶ     

⃗→ఒ⃗
      𝜆ଶ ଵ

ଶ
𝑀𝜔ଶ𝑟ଶ 

Trapping energy 

Kinetic energy, 
interactions 

Generator of 
scaling 
transformation 

Other examples: Classical: 1/r2 particles, 2D bosons (CFT) 
Quantum: 1D hard−core bosons, 3D unitary fermions, 1/r2 particles 
What about 2D bosons in QFT? 

𝛿ଶ 𝑟  ill-defined, interaction energy diverges ⇒ regularization is required. 

Popov 1983:      Ψ 𝑟ଵ,⋯ , 𝑟,⋯ , 𝑟,⋯ , 𝑟ே ∝ ln 𝑟 − 𝑟 𝑎ଶ⁄ ,               𝑟 − 𝑟 → 0 

Petrov 2001:      𝑎ଶ = 1.48. . .   𝑎ୄexp   −
గ
ଶ

఼
యವ

          a quantum length scale appears! 

New equation of state:    𝜇 𝑛 = రഏℏమ

 ఞ గమംశభమವమ  

where     𝜒 𝑥 = భ
షೈషభ(షೣ)

𝑥 → 0

≈ 1 ln 1 𝑥⁄⁄ +   𝒪 ୪୬ ୪୬ ଵ ௫⁄
୪୬ ଵ ௫⁄ మ  

(Popov 1983, 
Mora&Castin 2003) 

generator of scaling 
transformations: 

𝑄,𝐻 = 2𝑖𝐻 + 𝑖𝑎ଶ
𝜕

𝜕𝑎ଶ
𝐻 

Consequence: `leak’ in the algebra: 

leak to other observables 

𝑎ଷ : 3D scattering length 

𝑎ୄ =
ଶℏ

ఠ఼
 : transverse confinement length 

𝜔ୄ : transverse confinement frequency 

Order of magnitude for Rb: 0.5% for a transverse confinement frequency 12 kHz.  

optimal shift to start with a node: 

Δ𝑥 = ଵ


ఠబ
ఠ

ଶ
− 1  𝑅   

relative frequency shift for various transverse frequencies and aspect ratios: 

𝑡 = 0ି 
𝑡 = 0ା 

simulation of GPE 
parameters: ఠ఼

ଶగ
= 45 kHz 

𝐴𝑅ఒ =0.486 
We deduce 𝛿ఒ from the fit of the 
initial slope of the envelope. We 
get 𝛿ఒ = 0.0076, to compare 
with the exact value of 
𝛿ఒ = 0.00765618. 

𝜔, 𝑅 
𝜔, 𝑅 

Summary 

We propose an experimental scheme for the observation of a quantum anomaly — 
quantum-mechanical symmetry breaking — in a 2D harmonically trapped Bose gas. The 
anomaly manifests itself in a shift of the monopole excitation frequency away from the 
value dictated by the Pitaevskii-Rosch dynamical symmetry. While the corresponding 
classical Gross-Pitaevskii equation and the derived from it hydrodynamic equations do 
exhibit this symmetry, it is violated under quantization. The resulting frequency shift is 
of the order of 1% of the carrier, well in reach for modern experimental techniques. We 
propose using the dipole oscillations as a frequency gauge. 

Δ𝑥 

b 

d 
0 

Parameters for 87Rb in its F=2, mF=2 state 
𝑏=167 G/cm 
𝑃=4 W at 532 nm focused on 𝑤=500 µm 
𝑑=400 µm (𝐵 =13.4 G) 
ఠ
ଶగ

=41 Hz, ఠ఼
ଶగ

=45 kHz 

closed algebra, SO(2,1) 

Trapping energy 

Kinetic energy, 
interactions 

Generator of 
scaling 
transformation 

Kinetics, 
interactions 

ଵ
ଶ  (𝐫 ⋅ 𝐩 + 𝐩 ⋅ 𝐫) 
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An example of a quantum anomaly 
in the physics of cold atomic gases 

Maxim Olshanii, Hélène Perrin, and Vincent Lorent 
Department of Physics, University of Massachusetts Boston  

Laboratoire de Physique des Lasers, Université Paris 13 and CNRS. 
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Proposed experimental implementation 

2D trap: quadrupole trap of vertical axis + vertical blue-detuned lattice. Load atoms 
in a well below the magnetic zero.  Anisotropy should be avoided (see paper for an 
estimate). Excitation by a change in magnetic field bias and gradient. 
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Castin-Dum ansatz: 
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1
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𝑟
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The cloud size oscillates between 
𝑅𝜆୫୧୬ and 𝑅𝜆୫ୟ୶. 
Aspect ratio 𝐴𝑅ఒ is defined as 
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Corresponding anomaly at this 

amplitude: 𝛿ఒ =
ఋఠ
ଶఠ
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 Detection with a beat note 

Empirical manifestation of the anomaly: for 2D bosons in a harmonic trap the 
frequency Ω of small-amplitude monopole excitation is shifted as 

Shift of the monopole frequency 

Ω = 2𝜔 + 𝛿𝜔   where   ఋఠ
ଶఠ

≈ ଵ
ସ గ

యವ
఼

   in the limit 𝑎ଷ ≪ 𝑎ୄ. 

 Excite both the dipole (at 𝜔 ) and 
monopole modes:  Δ𝑥 and 𝜔 < 𝜔. 

Measure 𝑥ଶ    : it provides a beat note 
between Ω and 2𝜔, at 𝛿𝜔. 

With proper choice for Δ𝑥, start with a 
node in the beating amplitude.  

The initial slope of the envelope is 
ఋഊ
ଵଶ

ఠబ
ఠ
− ఠ

ఠబ
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ఋఠ
ଶఠ.  

Classical 
theory with a 
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Quantum divergent 
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preserved 

Quantum-regular 
theory, symmetry 
BROKEN canonical 

quantization 
regularization 

Pitaevskii-Rosch symmetry: Classical Field Theory (CFT) for 2D 
bosons in a harmonic trap 

Scaling invariance in 2D in the CFT: 𝐻 = 𝐻 +  𝐻ூ,    𝐻trap,    𝑄  form a closed algebra 
SO 2,1  

Manifestation of the symmetry: amplitude-independent frequency of 2ωHO of the 
monopole mode, absence of damping for this mode. (Dalibard 2002) 
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interactions 

Generator of 
scaling 
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Other examples: Classical: 1/r2 particles, 2D bosons (CFT) 
Quantum: 1D hard−core bosons, 3D unitary fermions, 1/r2 particles 
What about 2D bosons in QFT? 

𝛿ଶ 𝑟  ill-defined, interaction energy diverges ⇒ regularization is required. 

Popov 1983:      Ψ 𝑟ଵ,⋯ , 𝑟,⋯ , 𝑟,⋯ , 𝑟ே ∝ ln 𝑟 − 𝑟 𝑎ଶ⁄ ,               𝑟 − 𝑟 → 0 

Petrov 2001:      𝑎ଶ = 1.48. . .   𝑎ୄexp   −
గ
ଶ

఼
యವ

          a quantum length scale appears! 

New equation of state:    𝜇 𝑛 = రഏℏమ

 ఞ గమംశభమವమ  

where     𝜒 𝑥 = భ
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≈ 1 ln 1 𝑥⁄⁄ +   𝒪 ୪୬ ୪୬ ଵ ௫⁄
୪୬ ଵ ௫⁄ మ  

(Popov 1983, 
Mora&Castin 2003) 
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𝐻 

Consequence: `leak’ in the algebra: 

leak to other observables 

𝑎ଷ : 3D scattering length 

𝑎ୄ =
ଶℏ

ఠ఼
 : transverse confinement length 

𝜔ୄ : transverse confinement frequency 

Order of magnitude for Rb: 0.5% for a transverse confinement frequency 12 kHz.  

optimal shift to start with a node: 

Δ𝑥 = ଵ


ఠబ
ఠ

ଶ
− 1  𝑅   

relative frequency shift for various transverse frequencies and aspect ratios: 

𝑡 = 0ି 
𝑡 = 0ା 

simulation of GPE 
parameters: ఠ఼

ଶగ
= 45 kHz 

𝐴𝑅ఒ =0.486 
We deduce 𝛿ఒ from the fit of the 
initial slope of the envelope. We 
get 𝛿ఒ = 0.0076, to compare 
with the exact value of 
𝛿ఒ = 0.00765618. 

𝜔, 𝑅 
𝜔, 𝑅 

Summary 

We propose an experimental scheme for the observation of a quantum anomaly — 
quantum-mechanical symmetry breaking — in a 2D harmonically trapped Bose gas. The 
anomaly manifests itself in a shift of the monopole excitation frequency away from the 
value dictated by the Pitaevskii-Rosch dynamical symmetry. While the corresponding 
classical Gross-Pitaevskii equation and the derived from it hydrodynamic equations do 
exhibit this symmetry, it is violated under quantization. The resulting frequency shift is 
of the order of 1% of the carrier, well in reach for modern experimental techniques. We 
propose using the dipole oscillations as a frequency gauge. 

Δ𝑥 

b 

d 
0 

Parameters for 87Rb in its F=2, mF=2 state 
𝑏=167 G/cm 
𝑃=4 W at 532 nm focused on 𝑤=500 µm 
𝑑=400 µm (𝐵 =13.4 G) 
ఠ
ଶగ

=41 Hz, ఠ఼
ଶగ

=45 kHz 

closed algebra, SO(2,1) 

Trapping energy 

Kinetic energy, 
interactions 

Generator of 
scaling 
transformation 

Kinetics, 
interactions 

ଵ
ଶ  (𝐫 ⋅ 𝐩 + 𝐩 ⋅ 𝐫) 

⇒ small shift of ΩM
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2D Bose gas Modes Monopole Scissors Summary

The monopole mode in an isotropic harmonic trap
A way to study the Equation Of State

isotropic harmonic 2D trap, frequency ω

monopole probes the compressibility ⇒ ΩM is related to the
2D EOS µ(n):

ΩM =
√

2(2 + ε)ω with ε =
nµ′′(n)

µ′(n)

cf Rudi Grimm’s expt with fermions [Altmeyer 2006]

Ex: 2D weakly interacting gas: µ(n) = gn⇒ ΩM = 2ω

Ex: quantum anomaly due the beaking of scaling symmetry:
g̃/(16π) positive shift [Olshanii 2010]

Ex: flat, but 3D gas: µ(n) ∝ n2/3 ⇒ ΩM =
√

10/3ω

we probe the intermediate case: for non negligible interactions

is there a shift a as function of
µ

2~ωz
? [Merloti 2013]
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Observation of the monopole mode
Isotropic trap

Prepare a degenerate sample in an isotropic 2D trap
Excitation through a sudden change in ω
Very low T (no thermal fraction)

• experimental data
sinusoidal fit

[Merloti NJP2013]

typical data: ΩM close to 2ω; no measurable damping
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Results: shift of the monopole mode
A modified EOS

We observe a small negative shift as a function of µ/(2~ωz)
[Merloti PRA2013]:

!
!

!

0.0 0.1 0.2 0.3 0.4
1.80
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Α

"
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µ/(2~ωz )

γ = 1

γ = 2/3

The finite z frequency implies a modified EOS.
Typically 1% shift: γ = 0.96, µ ∝ n0.96.

Hélène Perrin, LPL – IIP Natal 2019 Lecture 3: Superfluid dynamics at the bottom of a bubble trap



2D Bose gas Modes Monopole Scissors Summary

Results: shift of the monopole mode
A modified EOS

Comparison with a 3D GPE simulation:

!
!

!

!
!

!

!
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1.80
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µ/(2~ωz )

γ = 1

γ = 2/3

The in-plane EOS is indeed impacted by the third dimension.
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Results: shift of the monopole mode
A modified EOS

Comparison with a perturbative theory (Olshanii): interactions
deform the 1D ground state and shift µ.

!
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!
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µ/(2~ωz )

γ = 1

γ = 2/3

Recover the observed behaviour at first order.
Merloti et al., PRA 88, 061603(R) 2013.
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Observing the quantum anomaly?

Recently observed with fermions, using a Feshbach resonance

S. Jochim, Heidelberg, 6Li
(also uses PCA)

2D 3D

ω
B 

/ ω
R 1.90

1.75

1.70

2.00

2.05

0.0 0.2

Particle Number N/N2D

0.4 0.6 0.8 1.0 1.41.2 1.6 1.8

√
3

√
10
31.80

1.85

1.95

ln(kFa2D) ≈ 1.0
T/TF ≈ 0.14 ± 0.01 

[PRL 121, 120401 (2018)]

Chris Vale, Swinburne, 6Li
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[PRL 121, 120402 (2018)]

For bosons: yet to be done
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The scissors mode

Scissors mode and superfluid transition

thermal or superfluid gas?
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The scissors mode
A signature of superfluidity in a dilute 2D gas

Using the scissors mode to characterize a superfluid
dilute gas [DGO Stringari 1999, Foot2000]

Scissors mode: oscillation of 〈xy〉 ∝ θ in an anisotropic harmonic
trap, ωx/ωy ∼ 1.3

scissors mode expected at ωsc =
√
ω2
x + ω2

y for a superfluid

no scissors mode in the thermal phase in the collisionless
regime, only beat notes of harmonic modes ω± = ωx ± ωy

crossover between the two regimes when T increases?

⇒ Use the scissors mode as a signature of superfluidity of a
dilute gas across the BKT transition!
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The scissors mode: previous work and expectations
3D vs 2D as a function of temperature

3D, bimodal fit of the angle(s):
observed negative shift

exp: [Marago, Foot PRL 2001]

2D: positive shift expected
ωsc connects to ω+

Figure 7
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numerics: [Simula, PRA 2008]

compute 〈xy〉 , FFT analysis
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Exciting the scissors mode

Procedure:

Anisotropic trap + sudden rotation of the trap axes.

Compute 〈xy〉 and plot its time variation.

Extract oscillation frequency ω and damping Γ.

Repeat for various µ and T (i.e. α = µ/kBT )
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Results with a global analysis of 〈xy〉
Two frequency branches: upper branch from ω+ to ωsc, lower
branch from ω− to 0.
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Results with a global analysis of 〈xy〉
Two frequency branches: upper branch from ω+ to ωsc, lower
branch from ω− to 0.
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Going local

The frequencies ω± are present in 〈xy〉(t) even for
α > αc (or T < TBKT), where a superfluid should be
present.

The gas is inhomogeneous...

Superfluid oscillation hidden by thermal contribution to 〈xy〉?
Can we get more local information?

Can we identify the superfluid phase in the inhomogeneous
gas with purely dynamical criteria?

⇒ perform a local analysis of the dynamics
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Analysing the local average

Local analysis: use the fact that the scissors oscillation is a
surface mode
In the spirit of LDA, compute the 〈xy〉ra average over an annulus,
isopotential of given average density

rescaled radius ra:
ω2
xx

2 + ω2
yy

2 = ω2
0r

2
a

(c)

ra
x

y

Extract the local values of ω and Γ
Three cases α� αc , α > αc , α < αc
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Analysing the local average
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Analysing the local average
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Analysing the local average
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Comparison with BKT LDA threshold

Case α > αc

BKT (αloc = αc)
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The equilibrium LDA threshold
for BKT is in agreement with the
local analysis of the dynamics.

[De Rossi et al., NJP 2016]

Open question: can we use it to
determine the SF fraction?
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Superfluid - normal boundary

Conclusion: the superfluid-normal boundary is located with a
purely dynamical criterion = frequency of the scissors mode.
Damping analysis on each side of the boundary: larger than
Laudau damping ⇒ SF to thermal gas coupling?
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Bonus: Local PCA

PCA applied on an annulus also reveals the scissors mode
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[Dubessy 2018]
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Summary & prospects

2D Bose gas: a very smooth and tunable trap to study the
collective modes

Direct observation of the mode shapes

A modified EOS evidenced with the monopole
mode

The scissors mode reveals normal-to-superfluid
boundary with a local analysis of the dynamics.

Outlook: use this probe to access a sharp
change in ρs at the boundary?

!
!

!

!
!

!

!

0.0 0.1 0.2 0.3 0.4
1.80

1.85

1.90

1.95

2.00

Α

"
!Ω

(c)

ra
x

y

20

ncλ
2

0
rcβ

1/2 10

n
(r

)λ
2 , ρ

s(
r)

λ
2  

rβ
1/2

Hélène Perrin, LPL – IIP Natal 2019 Lecture 3: Superfluid dynamics at the bottom of a bubble trap



2D Bose gas Modes Monopole Scissors Summary

Summary & prospects

Beyond the bottom of the bubble:

Looking for the collective modes of a shell (cf Natália’s talk)

Sun et al., Phys. Rev. A 98, 013609 (2018)]
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Summary & prospects

Beyond the bottom of the bubble:

Observation of the collective modes of a shell

Fast rotation in the shell: superfluid supersonic flow
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[Guo et al., submitted]
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