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Outline of the course

@ Lecture 1. Bose-Einstein condensation, superfluid
hydrodynamics and collective modes

@ Lecture 2: Adiabatic potentials for confining quantum gases

@ Lecture 3: Superfluid dynamics at the bottom of a bubble trap
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Tuning quantum gases

Quantum gases benefit from a wide range of tunable parameters:

temperature in the range 10 nK — 1 pK
interaction strength: scattering length a
dynamical control of the confinement geometry
periodic potentials (optical lattices)

°
°
°
@ low dimensional systems accessible (1D, 2D)
@ several internal states or species available

°

easy optical detection
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Collective modes as a probe of the system

This lecture: exploring the collective modes at the bottom of the
bubble trap:

@ support temperature in the range 10 nK - 1 uK
interaction strength controlled by confinement
dynamical control of the confinement geometry
periodic potentials (optical lattices)

low dimensional systems accessible (1D, 2D)

several internal states or species available

easy optical detection
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Outline of the course

@ The two-dimensional Bose gas

© Overview of the collective modes

© The monopole mode as a probe of the Equation Of State
@ The scissors mode as a probe of superfluidity

© Summary & prospects
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2D Bose gas

Confining to two dimensions
Prepare a 2D Bose gas

o Harmonic trap Vexi(x,y,z) = 1 Mw2x? + %I\/lw}z,y2 + I Mw?z?
@ 2D gas: compress strongly the transverse direction (z)
Wz > wy,y such that p, kg T < hw;: frozen along z

e Ground state of size a, = \/h/Mw,

[ —
=
1

Two cases depending of the ratio a/a, where a is the 3D
scattering length.
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2D Bose gas

Case 1: The quasi two-dimensional Bose gas: a, > a

Collisions remain 3D

o (r) = ¢ (r)o.(2) with —1202¢ + 3mwz’é(z) = "5=¢(2)
@ Plug into GPE:

(Can {M¢(Z) - [ L

Dz + = mw 222 .(z )] } =

2
{fmﬁﬂh + V(u)m] H(2) + gL P |6(2))?(2)

o Average over the z degree of freedom: [ ¢(z)* x

2

I

A+ V(r)v + gl Py

1
where |2 = pu— Shwz | and g = g/ 6(2)| dz = — 2

@ Dimensionless interaction g» = ; & with | g = V87— LPL

az R
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2D Bose gas

Case 2: Exotic case: a, < a

True 2D collisions

Collisions occur in 2D, scattering length ayp =~ 2aze_\/§% #0

N . . a
Renormalization of the interaction constant: g» x f <, na§D>
az

@ Coupling ‘constant’ depends on atomic density!
e Modified EOS: p(n) # gan = quantum anomaly
@ gop > 0 possible for small a, even if a <0

15
b)
. . 1.0
confinement-induced os e
A R = Cs
resonance for a < 0 4 00 Re<100A. ac-600A
. E—o.s- n,=10%m* //,‘_
[Petrov, Holzmann, Shlyapnikov ol
(2000)] 0 D S—
025 05 1 2 4 8 16 32
VR,
LPL
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2D Bose gas

Case 2: Exotic case: a, < a

True 2D collisions

Collisions occur in 2D, scattering length ayp =~ 2aze_\/§% #0

. . . . a
Renormalization of the interaction constant: g» x f <, na§D>
az
@ Coupling ‘constant’ depends on atomic density!

e Modified EOS: p(n) # gan = quantum anomaly
@ gop > 0 possible for small a, even if a <0

15

b)
confinement-induced . ;Z .
resonance for a < 0 ;;i 0:0- ——————— -_‘ RE=100C;3='30°A
E -0.54 ne=10%m” /,‘_
[Petrov, Holzmann, Shlyapnikov 1ol
(2000)] 15

025 05 1 2 4 8 16 a2
IR,

In the following we consider essentially case 1 with g = \/87a/a,.
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2D Bose gas

The two-dimensional Bose gas

2D: A marginal dimension

2D is a very special case! Logs and topological phase transitions

e Scaling symmetry and universality

psd D

e kinetic energy oc k?, interactions o< 1/r2, 45!
integrand k dk = critical dimension with
Log divergences

10¢

5,

@ no length scale: dimensionless interaction pP™ | +—Superfluid

strength g = h—,\;g 2 (ﬁ_ﬁ [ 2
@ EOS depends only on oo = 11/ kg T scaled 1 (o — o)/
D = f(a, g) [ENS,Chicago] [Chin et al. 2011]
LPL
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2D Bose gas

The two-dimensional Bose gas

2D: A marginal dimension

2D is a very special case! Logs and topological phase transitions

e 2D homogeneous case No long range order/BEC
(Hohenberg—Mermin—Wagner theorem), but a Kosterlitz—Thouless
transition to a superfluid state below TgkT, relying on
vortex-antivortex pairing. Universal jump of the superfluid density.

? superfluid ch normal T :
I T > al
A2 = 4 Bof e
dissociation 5, —>l
e — z
Of Vortex 0 00 108 (\? [} 120 25
vortex-antivortex pairs pairs proliferation of BiShOp and Reppy

free vortices

[ENS-CdF, NIST, Chicago, Palaiseau, Seoul, Cambridge...]

2016 Nobel prize in physics to Haldane, Kosterlitz and Thouless LPL
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2D Bose gas

The two-dimensional Bose gas

2D: A marginal dimension

e trapped gas V(r):
@ BEC recovered in a harmonic trap (finite size helps)

e BKT still relevant within local density approximation (LDA).
BEC-BKT interplay [Cambridge]

BKT superfluid phase within LDA
replace

1t by puoc(r) = po — V(r),
a by ajoc(r) = ao— V(r)/ kg T

V(ry

n(r)N2, py(r) X2

al/2 )
0 r.B 1 7'51'2
p

» from Holzmann & Krauth, PRL 2008 LPL
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2D Bose gas

The two-dimensional Bose gas

2D: A marginal dimension

2D is a very special case! Logs and topological phase transitions
Summary:

ideal interacting
homogeneous | no BEC, no SF BKT SF [ENS-CdF]
trapped BEC, no SF BEC + BKT within LDA

LPL
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2D Bose gas

The two-dimensional Bose gas

2D: A marginal dimension

2D is a very special case! Logs and topological phase transitions
Summary:

ideal interacting
homogeneous | no BEC, no SF BKT SF [ENS-CdF]
trapped BEC, no SF «»BEC + BKT within LDA

BEC-BKT interplay [Cambridge]
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2D Bose gas

Experimental implementation

rf-induced adiabatic potentials — the dressed quadrupole trap

Adiabatic potentials for rf-dressed atoms: dressed quadrupole trap
[reviews Garraway/Perrin: JPB 2016 and Adv.At.Mol.Opt.Phys. 2017]
Atoms are confined to an isomagnetic surface of a quadrupole field.

@ smooth potentials (magnetic fields with large coils)
@ strong confinement to the surface: w, ~ 27 x1—2 kHz
e geometry (rp, xy-anisotropy) can be fine-tuned dynamically
e temperature adjusted with a (weak) rf knife (30 — 200 nK)
side view (isopotentials):
\} e top-view:
I : a 2D quantum gas

QGi

S —— LPL
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Collective modes of the quasi-2D Bose gas

Overview of the collective modes
- SF
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Modes

Reminder for a 2D trapped Bose gas

Excitation spectrum and collective modes

Collective modes for the isotropic 2D gas: n, m are good quantum
numbers: w(n, m) = wo [2n% 4 2n|m| + 2n + ]m\]l/z

4
-« -~
- monopole n=1,m=20: .

2 superfluid and thermal
signature of the EOS
1]
° ° m - quadrupole n=0,m = £2

- dipole mode signature of superfluidity . 4
n=0,m=1, both
superfluid and thermal: - scissors for wy # w,
centre of mass signature of superfluidity U’
oscillation: clock < .8
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Modes

Expected collective modes in an anisotropic trap

From Bogolubov diagonalisation of an idealised case

Bogolubov modes computed numerically for the 2D gas in a

harmonic anisotropic trap wy, w):
m n [0.998] 0[1.332] p [1.552]

- ~—
- ‘ ' “ 2 dipoles (wx,wy),

= quadrupole-like (wgq),

q[1.674] r[1.988] s [2.024] t[2.356] K
~ O — scissors
A\ e (B | .. .. (ws = /w2 +w2), 4 more
A ‘-' w7 N modes of higher order
u[2:366] v[2.438) w[2.697) x[2.701) symmetry and then
-n PN P monopole-like (wp)
o YR
. D % v v
- VL.’ .
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Modes

Overview of low energy collective modes

Exciting low energy collective modes

A BEC prepared in 3D trap and transferred quickly into the 2D
rf-dressed quadrupole trap, whose axes are also suddenly rotated.
Several modes are excited during this process.

2D trap frequencies:
wyx = 27 x 33 Hz,
wy = 21 x 44 Hz

133 images
taken during 100 ms, after
various holding times.

excited cloud
LPL

Py
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Modes

Overview of the Bogolubov modes

Principal component analysis

Analysis of the correlations between pixels allows to recover the
collective modes.

average picture - monopole-like

. o-
.

E &
‘ . dipole mode y ‘ ; * quadrupole-like

R. Dubessy et al., Fast Track Comm. of New J. Phys. 16, 122001
(2014) + video abstract. =i

dipole mode x scissors
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Modes

Overview of the Bogolubov modes

Principal component analysis

Analysis of the correlations between pixels allows to recover the
collective modes.

E average picture

-
-
."
-> r
. dipole mode x ‘ ‘ scissors
. ' superfluidity
~ It

monopole-like
EOS

serve as a clock

for wy, wy
R. Dubessy et al., Fast Track Comm. of New J. Phys. 16, 122001
(2014) + video abstract. e

dipole mode y quadrupole-like
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Monopole
The monopole mode

Monopole mode and Equation of State

——
-

:u(n) ocn?,y =7

LPL
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Monopole

The monopole mode in an isotropic harmonic trap
A way to study the Equation Of State

isotropic harmonic 2D trap, frequency w

@ monopole probes the compressibility = Qy is related to the
2D EOS p(n):

' (n)
w(n)

cf Rudi Grimm's expt with fermions [Altmeyer 2006]

Qv =+v22+¢e)w with e=

e Ex: 2D weakly interacting gas: pu(n) = gn = Qp = 2w

LPL

Py
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Monopole

The monopole mode in an isotropic harmonic trap
A way to study the Equation Of State

isotropic harmonic 2D trap, frequency w

@ monopole probes the compressibility = Qy is related to the
2D EOS p(n):

"
Qv =+v22+¢e)w with e= nii”(n)

w(n)

cf Rudi Grimm's expt with fermions [Altmeyer 2006]

e Ex: 2D weakly interacting gas: pu(n) = gn = Qp = 2w

@ Ex: quantum anomaly due the beaking of scaling symmetry:
g/(167) positive shift [Olshanii 2010]

LPL
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Monopole

The monopole mode in an isotropic harmonic trap
Quantum anomaly Olshanii, Perrin, Lorent, PRL 2010

isotropic harmonic 2D trap, frequency w

Pitaevskii-Rosch symmetry: Classical Field Theory (CFT) for 2D
bosons in a harmonic trap

Scaling invariance in 2D in the CFT: Ay = Hy + H;, Htrap, Q form a closed algebra

S0(2,1)
2 2 71 2 .
pT ToAT p Trapping energy
. . _— s =
Kinetics, 2m A22m
interactions AT

. 1 —
96p( —77) — /1_295213(7”1 —13)
Layoa.2 T2 o105
trap: EMw re — A EMw r
Generator of
generator of scaling scaling

. . Kinetic energy, .
transformations: % (r-p+p-r) interactions 7 transformation
closed algebra, SO(2,1)
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Monopole

The monopole mode in an isotropic harmonic trap

Quantum anomaly Olshanii, Perrin, Lorent, PRL 2010
VT ay
Petrov 2001: a,p, = 1.48... a exp [—7(1—] a quantum length scale appears!
3D
. __ amh? (Popov 1983
New equation of state: n) = —mny(me?¥*tna,p? ’
a u(n) = =i 20%) Mora&Castin 2003)
x—-0
- . In(in1/2))
where  y(x) = o ~ 1/In(1/x) + 0( In(L/0? )

Trapping energy

Consequence: ‘leak’ in the algebra:

P -~ d
[Q, Ho] = ZlHO + la;p @HO

Generator of
scaling

Kinetic energy, .
interactions transformation
= small shift of Qu

leak to other observables
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Monopole

The monopole mode in an isotropic harmonic trap
A way to study the Equation Of State

isotropic harmonic 2D trap, frequency w

@ monopole probes the compressibility = Q4 is related to the
2D EOS pu(n):

ny' (n)
w'(n)

cf Rudi Grimm's expt with fermions [Altmeyer 2006]

Qv =+v22+¢e)w with e=

e Ex: 2D weakly interacting gas: u(n) = gn = Qp = 2w

@ Ex: quantum anomaly due the beaking of scaling symmetry:
g/(16m) positive shift [Olshanii 2010]

o Ex: flat, but 3D gas: u(n) o n?/3 = Qu = /10/3w
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Monopole

The monopole mode in an isotropic harmonic trap
A way to study the Equation Of State

isotropic harmonic 2D trap, frequency w

@ monopole probes the compressibility = Q4 is related to the
2D EOS pu(n):

ny' (n)
w'(n)

cf Rudi Grimm's expt with fermions [Altmeyer 2006]

Qv =+v22+¢e)w with e=

e Ex: 2D weakly interacting gas: u(n) = gn = Qp = 2w

@ Ex: quantum anomaly due the beaking of scaling symmetry:
g/(167) positive shift [Olshanii 2010]

o Ex: flat, but 3D gas: u(n) o n?/3 = Qu = /10/3w

@ we probe the intermediate case: for non negligible interactions

I

is there a shift a as function of T ? [Merloti 2013] LPL
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Monopole

Observation of the monopole mode

Isotropic trap

Prepare a degenerate sample in an isotropic 2D trap
Excitation through a sudden change in w
Very low T (no thermal fraction)

40
38

®
L]
L

36 R
e experimental data

sinusoidal fit
[Merloti NJP2013]

34+ -

32 | 4
30F ° o

Horizontal T.F. radius [pm)]

28 1 1 1
100 200 300

Holding time [ms]

typical data: € close to 2w; no measurable damping LPL
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Monopole

Results: shift of the monopole mode
A modified EOS

We observe a small negative shift as a function of u/(2%w;)
[Merloti PRA2013]:

S y=1
1,95} ,

3 [
S 190k -
185[ -
L v=2/3
.1 S
0.0 0.1 02 03 04
n/(2hws)
The finite z frequency implies a modified EOS.
Typically 1% shift: v = 0.96, p oc n%%°, LPL
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Results:
A modified

Monopole

shift of the monopole mode
EOS

Compari‘so‘n ‘W‘ith a 3D ‘GPI‘E ‘si‘m‘ulat‘io‘n:‘ |

185}

S Sy =2/3
.1 S
0.0 0.1 02 03 04
n/(2hwz)
The in-plane EOS is indeed impacted by the third dimension.

LPL

Py
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Monopole

Results: shift of the monopole mode
A modified EOS

Comparison with a perturbative theory (Olshanii): interactions
deform the 1D ground state and shift .

185 J

R S y=2/3
T S S S VR
p/(2hwz)
Recover the observed behaviour at first order.
Merloti et al., PRA 88, 061603(R) 2013. LPL
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Monopole
Observing the quantum anomaly?

Recently observed with fermions, using a Feshbach resonance

Chris Vale, Swinburne, °Li

S. Jochim, Heidelberg, °Li 21 ettt} ——
Y t/azp | |
(also uses PCA) P %, oo
205 === 20f—-Y__ %—ﬁj Y (] ¢ 00 H
200 == mmm oo g oo oo oo L ’ B -048 ||
1.95 F E < * 212
<190 ] Sk % N
KR i) . 3D» 3 ‘;
= o — L ® J
185} o] /10 ¢ N
____________________________ S YAl ©
180 Mnka )~1.0 Vs 1.8 A ' ) -
175 F | o onl 1
170 e |
00 02 04 06 08 10 12 14 16 18 17 L L e L
Particle Number N/N,, 02 N/NWW') 4
2D

[PRL 121, 120401 (2018)]
[PRL 121, 120402 (2018)]

For bosons: yet to be done LPL
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Scissors
The scissors mode

Scissors mode and superfluid transition

v o-
. ¥

thermal or superfluid gas?

LPL

Py
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Scissors

The scissors mode
A signature of superfluidity in a dilute 2D gas

Using the scissors mode to characterize a superfluid 7 gl
dilute gas [DGO Stringari 1999, Foot2000] ‘\©

Scissors mode: oscillation of (xy) o € in an anisotropic harmonic
trap, wy/wy, ~ 1.3

LPL

Py

Hélene Perrin, LPL — IIP Natal 2019 Lecture 3: Superfluid dynamics at the bottom of a bubble trap



Scissors

The scissors mode
A signature of superfluidity in a dilute 2D gas

Using the scissors mode to characterize a superfluid 7 gl
dilute gas [DGO Stringari 1999, Foot2000] ‘\©
Scissors mode: oscillation of (xy) o € in an anisotropic harmonic

trap, wy/wy, ~ 1.3
@ scissors mode expected at wsc = 4 /w2 + u)z, for a superfluid

@ no scissors mode in the thermal phase in the collisionless
regime, only beat notes of harmonic modes w+ = w, £ w,

LPL

Py
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Scissors

The scissors mode

A signature of superfluidity in a dilute 2D gas

Using the scissors mode to characterize a superfluid 7 il
dilute gas [DGO Stringari 1999, Foot2000] St

Scissors mode: oscillation of (xy) o € in an anisotropic harmonic
trap, wy/wy, ~ 1.3

@ scissors mode expected at wsc = 4 /w2 + u§ for a superfluid

@ no scissors mode in the thermal phase in the collisionless
regime, only beat notes of harmonic modes w+ = w, £ w,

@ crossover between the two regimes when T increases?

= Use the scissors mode as a signature of superfluidity of a
dilute gas across the BKT transition!

LPL

e
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Scissors

The scissors mode: previous work and expectations

3D vs 2D as a function of temperature

3D, bimodal fit of the angle(s): 2D: positive shift expected
observed negative shift Wsc connects to w
3.9 ? 4
g = 35
33 e il
e,
3.04 C - 21.5
g 4l FiE A R R
8”’ é 0.5
244 P0 120 130 140 150 160 170
T (nK)
2.1
numerics: [Simula, PRA 2008]
i compute (xy) , FFT analysis
02 04 06 08 10 12 1.4
T,
exp: [Marago, Foot PRL 2001] LPL

Py
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Scissors
Exciting the scissors mode

Procedure:
@ Anisotropic trap + sudden rotation of the trap axes.
e Compute (xy) and plot its time variation.

@ Extract oscillation frequency w and damping I

@ Repeat for various pand T (i.e. a« = pu/kgT)

T > TBKT

T < TekT

0 0.05 0.1 0.15
Time [s]

LPL

Py
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Scissors

Results with a global analysis of (xy)

Two frequency branches: upper branch from wy to wsc, lower
branch from w_ to 0.
BKT

T e W
L - o + ]

L __+_ J

o]
o o

a
I

upper branch

Frequency [Hz]
[e2] al ~

o]
o
T
I

55t k|

o
4
€
|

_+_
|
ki

[¢)]
I

lower branch

Frequency [Hz]

o
I

o o=/ (kBT) o

Hélene Perrin, LPL — IIP Natal 2019 Lecture 3: Superfluid dynamics at the bottom of a bubble trap



Scissors

Results with a global analysis of (xy)

Two frequency branches: upper branch from wy to wsc, lower
branch from w_ to 0.

BKT
[ . _._] w
Q> e 801 —4— —0@— f 1 *
o> ac ¥ 750 —+ 1
o < oc 70 |
3
upper branch g% ]
* 60 G . Wsc
55t ‘ |
§15 Sm g m s s s s s s s s s w_
510 —+ M - o ]
[0}
lower branch § 5r 1
E 07 Il Il Il Il 1
0 0.2 0.4 06 08 1 LPL

o o=/ (kBT) o
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Scissors
Going local

The frequencies w4 are present in (xy)(t) even for

a > a¢ (or T < TgkT), where a superfluid should be
present.

The gas is inhomogeneous...
@ Superfluid oscillation hidden by thermal contribution to (xy)?
@ Can we get more local information?

@ Can we identify the superfluid phase in the inhomogeneous
gas with purely dynamical criteria?

= perform a local analysis of the dynamics
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Scissors
Analysing the local average

Local analysis: use the fact that the scissors oscillation is a
surface mode

In the spirit of LDA, compute the (xy),, average over an annulus,
isopotential of given average density

()

rescaled radius rj:
2,2 2.2 _ 2,2
WX twyy® =wyh; I |

Extract the local values of w and I
Three cases o > a¢, o > ¢, a < Q¢
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Scissors

Analysing the local average

(0]
g O
T T

o> Q¢

Frequency [Hz]
[ BN
o <2

o
=)
D
2]
&
wn
0

55¢
upper branch
N 15~ P & i mimimimm i imm i ——— w_
L
Z 10
c
g °
lower branch T olole
0 10 0 . 3
Annu%us radius r Pum] LPL
S e
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Scissors
Analysing the local average

R ‘ -- W4
of
o> Q¢ i75, %
>
e 70 i
E
o < Q¢ 565’
- 60 ‘ il D, Wsc
55t

upper branch

£1 “““"“%mmmﬁnmmmm‘m@%“‘ w—
!
e
lower branch T o |
0 1b

Annu?t?s radius I'aSPMm]
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Scissors
Analysing the local average
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Comparison with BKT LDA threshold

Case a > ar

[o]
S =]
T T

The equilibrium LDA threshold
for BKT is in agreement with the
local analysis of the dynamics.
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[De Rossi et al., NJP 2016]

T 15~ ‘‘‘‘‘‘‘‘‘‘ Open question: can we use it to
g 10 | %Mﬂ determine the SF fraction?
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Scissors

Superfluid - normal boundary

Conclusion: the superfluid-normal boundary is located with a
purely dynamical criterion = frequency of the scissors mode.
Damping analysis on each side of the boundary: larger than

Laudau damping = SF to thermal gas coupling?
@

100
o g ()
~
%
(b)
0.2t
§: boundary determined
80.1
- with LAA
%
LPL
Prei gl

Hélene Perrin, LPL — IIP Natal 2019

Lecture 3: Superfluid dynamics at the bottom of a bubble trap



Scissors

Bonus: Local PCA

PCA applied on an annulus also reveals the scissors mode “..
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[y ?25
= 6000
20 4000
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boundary determined by comparison correlations between two radii:
between PCA eigenvectors and the qualitative agreement with a
(xy) mode two-fluid model

[Dubessy 2018]
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Summary
Summary & prospects

2D Bose gas: a very smooth and tunable trap to study the
collective modes

@ Direct observation of the mode shapes

@ A modified EQS evidenced with the monopole
mode

@ The scissors mode reveals normal-to-superfluid
boundary with a local analysis of the dynamics.

@ OQutlook: use this probe to access a sharp
change in ps at the boundary?

Py
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Summary
Summary & prospects

Beyond the bottom of the bubble:
@ Looking for the collective modes of a shell (cf Natdlia's talk)
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Summary
Summary & prospects

Beyond the bottom of the bubble:

@ Observation of the collective modes of a shell

@ Fast rotation in the shell: superfluid supersonic flow

155 205 245

-0.048s 3s
'O O
: | 7
385 508 Tls

[Guo et al., submitted)]
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