Lecture 2: Adiabatic potentials

Hélène Perrin

Laboratoire de physique des lasers CNRS-Université Paris 13 Sorbonne Paris Cité

Vortex Dynamics, Turbulence and Related Phenomena in Quantum Fluids — Natal, June 24-28, 2019

Outline of the course

- Lecture 1: Bose-Einstein condensation, superfluid hydrodynamics and collective modes
- Lecture 2: Adiabatic potentials for confining quantum gases
- Lecture 3: Superfluid dynamics at the bottom of a bubble trap

Tuning quantum gases

Quantum gases benefit from a wide range of tunable parameters:

- temperature in the range 10 nK 1 $\mu {\rm K}$
- interaction strength: scattering length a
- dynamical control of the confinement geometry
- periodic potentials (optical lattices)
- low dimensional systems accessible (1D, 2D)
- several internal states or species available
- easy optical detection

Using adiabatic potentials

This lecture: what adiabatic potentials are useful for:

- temperature in the range 10 nK 1 $\mu {\rm K}$
- interaction strength: scattering length a
- dynamical control of the confinement geometry
- periodic potentials (optical lattices)
- low dimensional systems accessible (1D, 2D)
- several internal states or species available
- easy optical detection

Using adiabatic potentials

This lecture: what adiabatic potentials are useful for:

- support temperature in the range 10 nK 1 μ K
- interaction strength controlled by confinement
- dynamical control of the confinement geometry
- periodic potentials (rf lattices)
- low dimensional systems accessible (1D, 2D)
- several internal states or species available
- easy optical detection

Outline of the course

Principle of adiabatic potentials

- Atom-field interaction
- Magnetic traps
- Coupling magnetic states with an rf field
- Trapping surface

2 Examples of adiabatic potentials

- First historical example: microwave dressing
- Dressed loffe-Pritchard trap
- Dressed quadrupole trap
- Dressing with multiple frequencies
- Probing adiabatic potentials
 - Dressed picture
 - Rf spectroscopy of the dressed states
 - Fulfilling the criterion for adiabaticity

References for the lecture

Obtailed theory of the rf-based adiabatic potentials:

H. Perrin and B. Garraway,

Trapping atoms with radio-frequency adiabatic potentials, in Ennio Arimondo, Chun C. Lin, Susanne F. Yelin, editors: Advances In Atomic, Molecular, and Optical Physics **66** AAMOP, UK: Academic Press, pp. 181-262 (2017); see also arXiv:1706.08063

 Review on recent applications of rf-based adiabatic potentials:
 B. M. Garraway and H. Perrin, Recent developments in trapping and manipulation of atoms with adiabatic potentials, Topical Review in J. Phys. B 49, 172001 (2016).

Principle of adiabatic potentials

Principle of adiabatic potentials

Principle of adiabatic potentials

General idea:

• Eigenstates $|\psi(\lambda)\rangle$ and eigenenergies $\hbar\Omega(\lambda)$ and splitting $\hbar\Delta(\lambda)$ depend from an external parameter λ (here: magnetic field and rf field)

 $\Omega_i(\lambda)$

- $\bullet\,$ Variations of this parameter λ with position or time
- For slow enough variations, the atomic states follows adiabatically the local eigenstate $|\psi(\lambda)\rangle$

Condition:

$$\dot{\lambda}\langle\psi|\frac{\partial|\psi\rangle}{\partial\lambda} \ll \Delta(\lambda)$$

or $\dot{x}\frac{\partial\lambda}{\partial x}\langle\psi|\frac{\partial|\psi\rangle}{\partial\lambda} \ll \Delta(\lambda)$
Here: $|\psi\rangle$ is a magnetic state dressed by radiofrequency photons

Interaction between an atom and a magnetic field Reminder on spin operators

Eigenstates of the total angular momentum operator $\hat{\mathbf{F}}$:

Given an axis z, $\hat{\mathbf{F}}^2$ and $\hat{F}_z = \hat{\mathbf{F}} \cdot \mathbf{e}_z$ can be diagonalized in the same basis $\{|m\rangle_z\}$, with eigenvalues:

$$\hat{\mathbf{F}}^2 |m\rangle_z = F(F+1)\hbar^2 |m\rangle_z \qquad \hat{F}_z |m\rangle_z = m\hbar |m\rangle_z$$

The whole basis is built using the $\hat{F}_{\pm} = \hat{F}_x \pm i\hat{F}_y$ operators:

$$\hat{F}_{\pm}|m
angle_z = \hbar\sqrt{F(F+1) - m(m\pm 1)}|m\pm 1
angle_z$$

Remark: $\hat{F}_x = \frac{1}{2}\left(\hat{F}_+ + \hat{F}_-\right)$.

Interaction between an atom and a magnetic field Interaction hamiltonian

Zeeman effect: The interaction between an atom with total angular momentum $\hat{\mathbf{F}}$ and a magnetic field $\mathbf{B}_0 = B_0 \mathbf{u}$ writes

$$\hat{H} = -\gamma \hat{\mathbf{F}} \cdot \mathbf{B}_0 = \frac{g_F \mu_B}{\hbar} B_0 \hat{F}_{\mathbf{u}} = \omega_0 \hat{F}_{\mathbf{u}},$$

where $\gamma = -\frac{g_F \mu_B}{\hbar}$ is the gyromagnetic ratio, g_F is the Landé factor and μ_B is the Bohr magneton. ω_0 is the Larmor frequency.

The eigenstates of \hat{H} are the states $|m\rangle_{\mathbf{u}}$, eigenstates of $\hat{F}_{\mathbf{u}} = \hat{\mathbf{F}} \cdot \mathbf{u}$. If the z axis is chosen along \mathbf{u} , these states are $|m\rangle_{z}$. The corresponding eigenenergies are

$$E_m = mg_F \mu_B B_0 = m\hbar\omega_0.$$

Magnetic trapping Position dependent magnetic field

Now \mathbf{B}_0 depends on position, in modulus B_0 and direction \mathbf{u} : $\mathbf{B}_0(\mathbf{r}) = B_0(\mathbf{r})\mathbf{u}(\mathbf{r})$.

If the atomic motion is slow enough, the atoms follow adiabatically the *local* magnetic eigenstate $|m\rangle_{u(r)}$.

The local energy $E_m(\mathbf{r})$ acts as a trapping potential:

$$V_m(\mathbf{r}) = g_F \mu_B B_0(\mathbf{r})$$

Low field-seekers are trapped at a magnetic field minimum.

Example of magnetic traps Quadrupole trap

Two coils with opposite currents: a quadrupole trap.

Field produced: $\mathbf{B}_0(\mathbf{r}) = b' (x \mathbf{e}_x + y \mathbf{e}_y - 2z \mathbf{e}_z)$

Potential: we define $\alpha = g_F \mu_B b' / \hbar$

$$B_0(\mathbf{r}) = b'\sqrt{x^2 + y^2 + 4z^2} \Rightarrow V_m(\mathbf{r}) = \hbar\alpha\sqrt{x^2 + y^2 + 4z^2}$$

Minimum with zero field at the center (0, 0, 0)

Example of magnetic traps loffe-Pritchard trap

4 bars: 2D quadrupole + 2 pinch coils with the same current: a loffe-Pritchard trap.

Field produced: $\mathbf{B}_0(\mathbf{r}) \simeq \left(B_0 + \frac{b''}{2}x^2\right)\mathbf{e}_x + b'\left(y\mathbf{e}_y - z\mathbf{e}_z\right)$

Potential: $V_m(\mathbf{r}) \simeq \hbar \Omega_0 + \frac{1}{2} \omega_x^2 x^2 + \frac{1}{2} \omega_\perp^2 (y^2 + z^2)$

Minimum with non-zero field B_0 at the center (0, 0, 0)

Rf coupling between magnetic states Static + oscillating magnetic fields

Two fields: static $\mathbf{B}_0 = B_0 \mathbf{e}_z$ and oscillating $\mathbf{B}_1 = B_1 \cos(\omega t) \mathbf{e}_x$. Hamiltonian:

$$\hat{H} = -\gamma \hat{\mathbf{F}} \cdot (\mathbf{B}_0 + \mathbf{B}_1(t)) = \omega_0 \hat{F}_z + \Omega_1 \cos(\omega t) \hat{F}_x,$$

where Ω_1 is the Rabi frequency of the rf field. Using \hat{F}_{\pm} :

$$\hat{H} = \omega_0 \hat{F}_z + \left\{ \frac{\Omega_+}{2} e^{-i\omega t} \hat{F}_+ + \text{h.c.} \right\} + \left\{ \frac{\Omega_-}{2} e^{-i\omega t} \hat{F}_- + \text{h.c.} \right\},$$

with $\Omega_+ = \Omega_1/2$ weight on the σ^+ polarization ($\Omega_- = \Omega_1/2$ weight on the σ^-). Hamiltonian in the rotating frame (rotating at ω around **B**₀) within rotating wave approximation (RWA):

$$\hat{H}' = -\delta \hat{F}_z + \Omega_+ \hat{F}_x$$

with $\delta = \omega - \omega_0$, detuning from magnetic resonance.

Adiabatic potential Eigenstates and energies

$$\hat{H}' = -\delta \hat{F}_z + \Omega_+ \hat{F}_x = \sqrt{\delta^2 + \Omega_+^2} \, \hat{\mathsf{F}} \cdot \mathsf{u}_{ heta}$$

with $\mathbf{u}_{\theta} = \cos \theta \mathbf{e}_z + \sin \theta \mathbf{e}_x$ and

$$\cos heta = rac{-\delta}{\sqrt{\delta^2 + \Omega_+^2}}\,, \qquad \sin heta = rac{\Omega_+}{\sqrt{\delta^2 + \Omega_+^2}}\,,$$

Eigenstates: $|m\rangle_{\theta} \equiv |m\rangle_{\mathbf{u}_{\theta}}$. Eigenenergies: $m\hbar\sqrt{\delta^2 + \Omega_+^2}$.

For position dependent B_0 and/or B_1 , i.e. $\omega_0(\mathbf{r})$ and/or $\Omega_+(\mathbf{r})$, rf-dressed adiabatic potentials:

$$V_m(\mathbf{r}) = m \hbar \sqrt{\delta^2(\mathbf{r}) + \Omega_+^2(\mathbf{r})}$$
 .

Adiabatic potential for a linear magnetic field Eigenstates and energies

For a linear static magnetic field: $B_0(x) = b'x$, with uniform Ω_+

$$V_m(x) = m\hbar\sqrt{lpha^2(x-x_0)^2 + \Omega_+^2}$$

where $\alpha = g_F \mu_B b' / \hbar$ and $x_0 = \omega / \alpha$. Ex: F = 1, bare basis vs dressed basis

[Figure from Perrin & Garraway, Adv. At. Mol. Opt. Phys. 2017]

Adiabatic potential for a linear magnetic field Oscillation frequency

 $m = +1/2 \rangle_{\theta} \langle V_m \rangle$ Ex: F = 1/2: avoided crossing between dressed states $-x_0$ -1 $\left|\frac{1}{2}\right\rangle_z$ Close to the trap minimum at $x = x_0$: $V_m(x) = m\hbar\sqrt{\alpha^2(x-x_0)^2 + \Omega_+^2} \underset{x \sim x_0}{\simeq} m\hbar\Omega_+ + \frac{1}{2}M\omega_{\rm trap}^2 x^2$ $\omega_{\rm trap} = \alpha \sqrt{\frac{m\hbar}{M\Omega_{\perp}}} \propto \frac{b'}{\sqrt{\Omega_{\perp}}}$ where

high trap frequency for large magnetic gradients and low rf coupling.

Typical shape for adiabatic traps Trapping surface

Adiabatic potential:

$$V_m(\mathbf{r})=m\hbar\sqrt{\delta^2(\mathbf{r})+\Omega_+^2(\mathbf{r})}$$

- The detuning δ(r) = ω ω₀(r) varies quickly (like the magnetic potential)
- The rf coupling $\Omega_+(\mathbf{r})$ varies slowly, especially if Ω_1 is uniform \Rightarrow variations dues to the respective orientations of \mathbf{B}_0 and \mathbf{B}_1 .
- To a good approximation: the trap minimum lies within the isomagnetic surface $\delta(\mathbf{r}) = 0$ (resonant surface $\omega_0(\mathbf{r}) = \omega$)
- Within this surface, $V_m(\mathbf{r}) = m\hbar\Omega_+(\mathbf{r})$ and the minimum occurs where Ω_+ is minimum or at the bottom where gravity attracts the atoms.

Atom-field Mag. trap Rf-dressing Trapping surface

Principle of rf-induced adiabatic potentials Trapping to an isomagnetic surface

First proposal with rf fields: O. Zobay and B. Garraway, PRL **86**, 1195 (2001):

 $\mathbf{B}_0(\mathbf{r}) + \mathbf{B}_1 \cos \omega t$

inhomogeneous magnetic field + rf field

strong coupling regime (large B_1) \Rightarrow avoided crossing at the resonance points

Atom-field Mag. trap Rf-dressing Trapping surface

Principle of rf-induced adiabatic potentials Trapping to an isomagnetic surface

First proposal with rf fields: O. Zobay and B. Garraway, PRL **86**, 1195 (2001):

 $\mathbf{B}_0(\mathbf{r}) + \mathbf{B}_1 \cos \omega t$

inhomogeneous magnetic field + rf field

strong coupling regime (large B_1) \Rightarrow avoided crossing at the resonance points

atoms trapped at the isomagnetic surface of an inhomogeneous magnetic field set by ω :

surface
$$B_0(\mathbf{r}) = \frac{\hbar}{|g_F|\mu_B} \omega.$$

Trapping to an isomagnetic surface Bubbles and double wells

magnetic landscape: iso-*B* surfaces

Trapping to an isomagnetic surface Bubbles and double wells

magnetic landscape: iso-*B* surfaces

 \mathbf{B}_1 rf on

selecting the iso-*B* surface

Trapping to an isomagnetic surface Bubbles and double wells

magnetic landscape: iso-*B* surfaces

B₁ rf on selecting the iso-*B* surface

Atom-field Mag. trap Rf-dressing Trapping surface

Trapping to an isomagnetic surface Bubbles and double wells

magnetic landscape: iso-*B* surfaces

gravity on: flat trap

B₁ rf on selecting the iso-*B* surface

Atom-field Mag. trap Rf-dressing Trapping surface

Trapping to an isomagnetic surface Bubbles and double wells

magnetic landscape: iso-*B* surfaces

 \mathbf{B}_1 rf on selecting the iso-B surface

gravity on: flat trap

inhomogeneous rf coupling **B**₁(**r**): double well

Examples of adiabatic potentials

Nice examples of adiabatic potentials

[Colombe et al. (2004)]

[Schumm et al. (2005)]

Spreeuw et al., PRL 72, May 1994:

VOLUME 72, NUMBER 20

PHYSICAL REVIEW LETTERS

16 MAY 1994

Demonstration of Neutral Atom Trapping with Microwaves

R. J. C. Spreeuw, C. Gerz, Lori S. Goldner, W. D. Phillips, S. L. Rolston, and C. I. Westbrook* National Institute of Standards and Technology, PHY A-167, Gaithersburg, Maryland 20899

M. W. Reynolds[†] and Isaac F. Silvera Lyman Laboratory of Physics. Harcard University, Cambridge, Massachusetts 02138 (Received 4 November 1993)

We demonstrate trapping of neutral Cs atoms by the magnetic dipole force due to a microwave field. The trap is formed in a spheretal microwave covity function are the ground state hyperine transition (9.193 GHz). With a microwave power of 33 W, the trap is ≈ 0.1 mK deep. It is loaded with Cs atoms laser cooled to $\approx 4 \mu$ K. We observe oscillatory motion of atoms in the trap at frequencies of 1–3 Hz. This type of trap has certain advantages for achieving the conditions for Bose-Einstein condensation in hydrogen or the akinsi, because it can confine atoms predominantly in the lowest energy spin state.

Trapping with an inhomogeneous microwave field in a static magnetic field.

[Spreeuw 1994]

The potential for the atoms in the trapping state, due to static magnetic, microwave, and gravitational fields, is

$$U(\mathbf{r}) = -\bar{\mu}B(\mathbf{r}) - \frac{1}{2}\hbar \Omega(\mathbf{r}) + mgz ,$$

where mgz is the gravitational energy, $\Omega = (\omega_R^2 + \delta^2)^{1/2}$, with the Rabi frequency $\omega_R(\mathbf{r}) = \mu_\perp b_\perp (\mathbf{r})/\hbar$ and the detuning $\delta(\mathbf{r}) = 2\mu_z [B_{\text{res}} - B(\mathbf{r})]/\hbar$, both functions of position; b_\perp is the amplitude of the rf field transverse to the

The trapping potential is given by the microwave coupling $\omega_R(\mathbf{r})$ and detuning $\delta(\mathbf{r}) = \omega_{mw} - \mu B(\mathbf{r})/\hbar$.

[Spreeuw 1994]

[Spreeuw 1994]

FIG. 3. Sequence of images with 67 ms successive increase in trapping time. The bright ring is a 1 cm diameter observation hole in the side of the cavity. For this sequence the microwave power level was 42 W.

Cs atoms oscillating in the microwave + magnetic field trap

Principle Examples Probing

Early example Dressed IP Dressed Quad Multiple rf

Example 1: The dressed loffe-Pritchard trap First experimental realization

A "bubble trap" in the presence of gravity

calculated isopotential lines

experiment: Colombe et al., EPL **67**, 593 (2004)

Principle Examples Probing

Early example Dressed IP Dressed Quad Multiple rf

Example 1: The dressed loffe-Pritchard trap First experimental realization

A "bubble trap" in the presence of gravity

calculated isopotential lines

experiment: Colombe et al., EPL **67**, 593 (2004)

Principle Examples Probing

Early example Dressed IP Dressed Quad Multiple rf

Example 1: The dressed loffe-Pritchard trap First experimental realization

Seing the bubble structure

calculated isopotential lines

Early example Dressed IP Dressed Quad Multiple rf

A double well potential on an atom chip Playing with rf gradients

With an inhomogeneous rf coupling: double well potential

[Schumm et al., Nat. Phys. 2005]

Well separation adjusted with the rf frequency.

Hélène Perrin, LPL – IIP Natal 2019 Lecture 2: Adiabatic potentials

A double well potential on an atom chip Atom interferometry

Interference fringes from atoms released from the double well potential

[Schumm et al., Nat. Phys. 2005]

A ring trap Playing with rf polarization

With a circular rf polarization: annular potential

Experiment: [Kim et al., PRA 2016]

Example 2: The dressed quadrupole trap Dressing the spin states

•
$$\mathbf{B}_0 = b'(x\mathbf{e}_x + y\mathbf{e}_y - 2z\mathbf{e}_z)$$

Spin states in a quadrupole field coupled through a rf field...

Example 2: The dressed quadrupole trap Dressing the spin states

•
$$\mathbf{B}_0 = b'(x\mathbf{e}_x + y\mathbf{e}_y - 2z\mathbf{e}_z)$$

...trap minima at the resonant points = isomagnetic surface.

isomagnetic surfaces: ellipsoids with $r_0 \propto \frac{\omega}{h'}$

Example 2: The dressed quadrupole trap From the bubble to the ring

$$\omega_z \propto rac{b'}{\sqrt{\Omega}} \sim$$
 1-2 kHz $\omega_x, \omega_y \propto \sqrt{rac{g}{r_0}} \sim$ 20-50 Hz

side view (isopotentials):

• very flat
$$\omega_z \gg \omega_{x,y}$$

•
$$\eta = \frac{\omega_x}{\omega_y}$$
 controlled through rf polarization:

- ullet rotationally invariant $(\eta=1)$ for a σ^+ polarization along z
- anisotropic $(\eta \neq 1)$ for linear horizontal polarization
- geometry can be modified dynamically
- ideal for the study of collective modes of the 2D trapped gas

Example 2: The dressed quadrupole trap From the bubble to the ring

•
$$\mathbf{B}_0 = b'(x\mathbf{e}_x + y\mathbf{e}_y - 2z\mathbf{e}_z)$$

- rotationally invariant for a σ^+ polarization along z
- anisotropic for linear horizontal polarization
- geometry can be modified dynamically
- ideal for the study of collective modes of the 2D trapped gas

top-view: a [2D] quantum gas

collective modes:

Ring trap from the dressed quadrupole Ring trap for dressed atoms

bubble trap (dressed quadrupole)
+ dipole trap (standing wave or
double light sheet)

Morizot et al., PRA 74 023617, 2006

Heathcote et al., New J. Phys. **10** 043012 (2008)

De Goër et al. (2018)

trap loading with a bias field

Early example Dressed IP Dressed Quad Multiple rf

Ring trap from the dressed quadrupole Ring trap for dressed atoms

Atoms in a ring (Oxford group)

Heathcote et al., New J. Phys. 10 043012 (2008)

Example 3: Multiple rf frequencies A rf lattice

Select several iso-B surfaces with multiple rf frequencies

Proposal: [Courteille et al., J. Phys. B 2006]

Example 3: Multiple rf frequencies Realization with 3 frequencies and gravity: double-well

3 frequencies and gravity in the dressed quadrupole trap

(a) 60

population imbalance vs Ω_2

 $\Omega_{2}(2\pi \times kHz)$

double well with 3 rf

Harte et al., Phys. Rev. A 97, 013616 (2018)

20 Vell depth (kHz)

Multiple frequencies: Time-average adiabatic potential

Starting from a dressed quadrupole trap:

Add a vertical homogeneous magnetic field, modulated in time. $\omega_{osc} \ll \omega_{mod} \ll \Omega_+ \ll \omega$ 100 Hz < 7 kHz < 50 kHz < 1.4 MHz

TAAP ring Time-average adiabatic potential

Results

Proposal: Lesanovsky and von Klizting, PRL 2007. Experiments: Sherlock et al., PRA 2011 (Oxford group) Navez et al., NJP 2016 (von Klitzing group)

Probing adiabatic potentials

Probing adiabatic potentials

Dressed picture Description with a quantized rf field

Write the Hamiltonian using a quantum rf field:

$$\hat{\mathbf{B}}_1 = (b_+ \, \mathbf{e}_+ + b_- \, \mathbf{e}_-) \, a + h.c.$$

Spin + field Hamiltonian in the limit of large photon number N:

$$\hat{H} = \omega_0 \hat{F}_z + \hbar \omega a^{\dagger} a + \left[\frac{\Omega_+}{2\sqrt{\langle N \rangle}} \left(a \hat{F}_+ + a^{\dagger} \hat{F}_- \right) + \frac{\Omega_-}{2\sqrt{\langle N \rangle}} \left(a \hat{F}_- + a^{\dagger} \hat{F}_+ \right) \right]$$

Uncoupled states:

|m,N
angle with energy $E_{m,N} = m\hbar\omega_0 + N\hbar\omega = -m\hbar\delta + (N+m)\hbar\omega$.

Dressed manifolds Energy of uncoupled states

Uncoupled states: $E_{m,N} = -m\hbar\delta + (N+m)\hbar\omega$ Within RWA: $|\delta| \ll \omega \Rightarrow$ well separated manifolds (here F = 1)

Dressed manifolds Coupling between states

Coupling: 2 terms

- inside a given manifold: $\frac{\Omega_+}{2\sqrt{\langle N \rangle}} \left(a \hat{F}_+ + a^{\dagger} \hat{F}_- \right)$
- between manifolds separated by $2\hbar\omega$: $\frac{\Omega_{-}}{2\sqrt{\langle N \rangle}} \left(a \hat{F}_{-} + a^{\dagger} \hat{F}_{+} \right)$

 \Rightarrow only keep the first term within RWA

$$\langle m \mp 1, N \pm 1 | \hat{V}_c | m, N \rangle \simeq \frac{\Omega_+}{2}$$

Dressed manifolds Coupling between states

Uncoupled states: $E_{m,N} = -m\hbar\delta + (N+m)\hbar\omega$

Coupling amplitude:

inside a given manifold: $\frac{\Omega_{+}}{2\sqrt{\langle N \rangle}} \left(a \hat{F}_{+} + a^{\dagger} \hat{F}_{-} \right)$

between manifolds split by $2\hbar\omega$: $\frac{\Omega_{-}}{2\sqrt{\langle N \rangle}} \left(a \hat{F}_{-} + a^{\dagger} \hat{F}_{+} \right)$

 \Rightarrow only keep the first (resonant) term within RWA

$$\langle m \mp 1, N \pm 1 | \hat{V}_c | m, N \rangle \simeq \frac{\Omega_+}{2}$$

Rf spectroscopy

Coupling between dressed states with a weak rf probe

We define the local splitting by $\Omega(\mathbf{r}) = \sqrt{\delta^2(\mathbf{r}) + \Omega_+^2(\mathbf{r})}$. Dressed energies: $m\hbar\Omega(\mathbf{r}) + N\hbar\omega \Rightarrow$ transitions at Ω , $\omega \pm \Omega$

Rf spectroscopy Spectroscopy of an ultracold gas in a dressed quadrupole trap

Rf spectroscopy Spectroscopy of a BEC in a dressed quadrupole trap

Single peak at
$$\omega_{\rm probe} = |\Omega_+| \Rightarrow |\Omega_+| = 2\pi \times 27.1 \pm 0.1 ~\rm kHz$$

Merloti et al., NJP 15, 033007 (2013)

Application to rf evaporative cooling Back to the dressed quadrupole trap

Reminder: isomagnetic surfaces: ellipsoids with $r_0 \propto \frac{\omega_{\rm rf}}{b'}$

temperature T controlled with a rf knife (weak second rf field) at $\Omega + \nu_{cut}$ or $\omega + \Omega + \nu_{cut}$

Beyond RWA Dressed levels at large coupling

Dressed levels at large Ω_{\pm} :

$$\label{eq:shared_states} \begin{split} \omega &= 2\pi \times \mbox{ 600 kHz} \\ \Omega_{\pm} &= 0 \mbox{ up to above } \omega/2 \end{split}$$

Hofferberth et al., PRA **76**, 013401 (2007) [Vienna]

Beyond RWA Spectroscopy in an atom chip adiabatic potential

Landau-Zener losses Criterion for adiabaticity

Landau-Zener theory: atoms will leave the adiabatic state if the state variations are faster than Ω : for large $b'/low \Omega$

- quiet DDS source is necessary
- avoid rf phase noise, frequency noise, amplitude noise
- lifetime depends exponentially on b', Ω and velocity

Landau-Zener losses Criterion for adiabaticity

Landau-Zener theory: atoms will leave the adiabatic state if the state variations are faster than Ω : for large $b'/{\rm low}~\Omega$

- lifetime depends exponentially on b', Ω and velocity
- evaporation induced by energy-dependent LZ losses

Summary

Adiabatic potentials: A new tool for manipulating ultracold atoms or quantum gases

• Double-wells,...

• ... 2D gases,...

• ... ring traps,...

• ... and more!

