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Outline of the course

@ Lecture 1. Bose-Einstein condensation, superfluid
hydrodynamics and collective modes

@ Lecture 2: Adiabatic potentials for confining quantum gases

@ Lecture 3: Superfluid dynamics at the bottom of a bubble trap

LPL

Py

Hélene Perrin, LPL — IIP Natal 2019 Lecture 1: Hydrodynamics in quantum gases



Outline of the course

@ Lecture 1: Bose-Einstein condensation, superfluid
hydrodynamics and collective modes

@ Lecture 2: Adiabatic potentials for confining quantum gases

@ Lecture 3: Superfluid dynamics at the bottom of a bubble trap

LPL

Py

Hélene Perrin, LPL — IIP Natal 2019 Lecture 1: Hydrodynamics in quantum gases



Quantum gases

Quantum gases benefit from a high degree of control of their
external and internal degrees of freedom:
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Quantum gases

Quantum gases benefit from a high degree of control of their
external and internal degrees of freedom:

@ control of the temperature 1 nK - 1 uK

@ interaction strength: scattering length a
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Quantum gases

Quantum gases benefit from a high degree of control of their
external and internal degrees of freedom:

control of the temperature 1 nK — 1 uK
interaction strength: scattering length a
confinement geometry

periodic potentials (optical lattices)

® 6 6 o ¢

low dimensional systems (1D, 2D)
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Quantum gases

Quantum gases benefit from a high degree of control of their
external and internal degrees of freedom:

o
]
o
o
o
o
o

control of the temperature 1 nK — 1 uK
interaction strength: scattering length a
confinement geometry

periodic potentials (optical lattices)

low dimensional systems (1D, 2D)

several internal states, bosons or fermions

easy optical detection
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Quantum gases

Quantum gases benefit from a high degree of control of their
external and internal degrees of freedom:

o
]
o
o
o
o
o

control of the temperature 1 nK — 1 uK
interaction strength: scattering length a
confinement geometry

periodic potentials (optical lattices)

low dimensional systems (1D, 2D)

several internal states, bosons or fermions

easy optical detection

= an ideal system for the study of superfluid dynamics.
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References for the lecture

@ F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, Theory
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@ C. J. Pethick and H. Smith, Bose—Einstein Condensation in
Dilute Gases, Cambridge (2008)

© Lev Pitaevskii and Sandro Stringari, Bose-Einstein
condensation, Oxford (2003)

@ Lev Pitaevskii and Sandro Stringari, Bose-Einstein
Condensation and Superfluidity, Oxford (2016)
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@ BEC in non interacting Bose gases
© Interacting Bose gases: GPE

© Superfluid hydrodynamics of Bose gases
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BEC

Bosons and fermions

Average occupation number of the quantum states:

fermions: electrons, neutrons, bosons: photons, composite with an

protons. . .; spin 1/2, 3/2... even number of fermions. . .; spin 0,
1, 2.
Fermi—Dirac E E
distribution T — Bose—Einstein
1 —— distribution
f(E)= —Ee T - T
eB(E—p) 41 o — o 1
— FE)= e 1
0<f<l1 —o .
Pauli principle e T f is not bounded!
B =1/kgT; p: chemical potential LPL
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BEC

Fermions at low temperature

Degenerate fermions: the Fermi sea (not a phase transition)

— —
— — — EF
_ — ——
—— - —
_— — —
— —— —
T>Tr T~Tk T <TF
LPL
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BEC

Bosons at low temperature

@ Chemical potential for non interacting bosons: u < E; for all
states / to keep f(E;) > 0 = p < Ep of ground state

@ Number of particles in excited states N':

1 1
r_ / _
N = Z BE —1 < Nnax(T) Z AEE) _ 1
i#0 i#0

o If this sum is finite, N’ is bounded by N/ .. .(T)
= saturation of the excited states

o If N> N/ ..(T), No=N — N’ is macroscopic
@ Bose-Einstein condensation for N > N¢(T) ~ N/ ..(T)

Equivalently T¢(N) defined by Nc(T¢) = N
LPL
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BEC

Bose-Einstein condensation

Bose-Einstein condensation: saturation of the number of particles
in excited states N/ and macroscopic accumulation Ny ~ N of
particles in the ground state for T < T¢(N) or N > N¢(T)

E— ——
——— RN EE—
— e
- e
—— -
- ——
—e—
- e A — 800000
—e0—
T>TC T<TC
T~ Tc
LPL
No < N No ~ N e
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BEC

Does Bose-Einstein condensation occur?

@ The convergence of the sum on N/ depends on the density of
states p(e)

@ An important particular case: power law density of state
p(e) o (€ — e0)* with £ > &9

0o 00 © 4
Ne(T) xS /0 e ide o (ke TMTY o
n=1 n=1

@ Converges for k > 0.

@ Fraction of condensed particles:

el —n — %1 (1)
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BEC

Bose-Einstein condensation in a harmonic trap

@ In a harmonic trap wp in dimension D, p(E) oc EP1
= power law with k=D —1

o BEC occurs for D > 1i.e. D=2 or D = 3 [Bagnato 1987]

. N TY\?
3D harmonic trap: WO =1- <T>
kBTC:thNl/3>>hwo ¢

N,

N
) N
' T/t

Cornell & Wieman Science 1995 Ensher et al. PRL 77, 4984 (1996)
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BEC

Bose-Einstein condensation in a 3D box

DOS in a box in dimension D: p(E) o< EP/2=1 = only D = 3!
In a 3D box BEC for nA}. > 2.6 with Ay = —=L—: N¢ oc T3/2

3HWU 1 P/P,= 0.4

V2mmkg

[=]

© thermal atoms

0

Lo amow s oo o

6
a condensed atoms
b », ,I:
OA .-—".' \\-... _..—4’ \-.._ -
2 r s 3 total atom number (10%)
measure Ng/N, 3D box potential Saturation of thermal particles
39K, tunable interactions see also PRL 106, 230401 (2011)
PRL 110,200406 (2013)
Hadzibabic group LPL
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BEC

Interpretation of critical temperature

Degeneracy criterion: more than one particle per quantum state.
. ; . h .
Size of a state: At = TormiaT thermal de Broglie wavelength

o * °
i\, Ve
. . °
‘e T < Tc
T>Tc¢ AT > d
AT < d a single wavefunction for

all particles
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GPE

Role of interactions
Problem: do interactions modify this picture of accumulation in a
single-particle state? H = ZlNzl hg) + i V(i — 1)

Test: interferences between condensates

|
0 Absorplion

MIT 1996
@ the coherence length is the cloud size
@ weak interactions (dilute gas)
@ a mean field description is appropriate

Lecture 1: Hydrodynamics in quantum gases
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GPE

Role of interactions

How to find the ground state of H = SN héi) + i V(i —1)?

@ assume weak interactions (dilute gas)

LPL
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GPE

Role of interactions

How to find the ground state of H = SN héi) + i V(i —1)?
@ assume weak interactions (dilute gas)

e mean field description: assume the same wavefunction (r)
for all atoms i.e. W) =[)1 ® - ® [¢)n, ¥(r) to be found
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GPE

Role of interactions

How to find the ground state of H = SN héi) + i V(i —1)?
@ assume weak interactions (dilute gas)

e mean field description: assume the same wavefunction (r)
for all atoms i.e. W) =[)1 ® - ® [¢)n, ¥(r) to be found

@ minimize the energy functional (W|H|V) to find ¢
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GPE

Role of interactions

How to find the ground state of H = SN héi) +2 i V(ri—1)?
@ assume weak interactions (dilute gas)
e mean field description: assume the same wavefunction (r)
for all atoms i.e. |V) = |¢)1 ® - - ® [¢)n, (r) to be found
@ minimize the energy functional (W|H|V) to find ¢
o this yields the Gross-Pitaevskii equation (GPE) for v
h2v72
(_ 2m

+ Vet(1) + £ [0 )0 = v
—_— ——

Epot Eint

Exin

2, . . .
g = 4“—,’33 interaction coupling constant, we assume here g > 0

a scattering length

1 chemical potential = cost to add a particle -

Py
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GPE

Solution of GPE in a box

Consider a box potential of size L: Vx(r) = 0 + hard wall b.c.
h2v2,¢]
o = MY
m

@ vanishing interactions (Schrodinger): —

¥(x) ~ sin (mx/L) ground state of h(%)
= density o sin? (7x/L)

LPL
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GPE

Solution of GPE in a box

Consider a box potential of size L: Vexi(r) =0 + hard wall b.c.

@ increasing interactions: 2 V d} +g|vPy = py
density flattens

healing length to recover from the edge

ng
N/L
&
15 10 5h2 0 5 10 15
Estimation of healing length e ~
h
=|§=

2my [

Py
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GPE

Solution of GPE in a box

Consider a box potential of size L: Vey(r) = 0 + hard wall b.c.

e large interactions: g [¢)|%¢ ~ up = ng = pu/g ~ N/L
except at the edges within the healing length

ng

P

N/L

-15 -10 -5 0 5 10 15

Close to the edge: ¥(x) ~ \/ng tanh[x/(£v/2)]

LPL

Py
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Viy(r) =

1, 2.2
5muwyre.
o weak interactions: Gaussian ground state of h(®) with size ag
}»2v2
: d} + Vext(r)Y = b

/
.
/
N\ .
\ .
\ /
\ /
\ /
\ /
\ /
N / /
\ foem" 7T ~4 /
4 \ /
-1 N
AN 7 " /
NS ~
e/ Yy
A/ \
/N \
\,
s A, X
/ Ny -~ N
4 ~ - \
L RS S~ T,
-3 -2 -1 0 1 2 3

Hélene Perrin

LPL - 1IP Natal 2019
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Ve (r) = 2 mw3r?.

@ increase interactions: deformed Gaussian state with size > ag
P V ¢ + Vet (r )1,Z)+g|¢|21/1 =

LPL

Py
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Ve (r) = 2 mw3r?.

@ increase interactions: non-Gaussian state with size > ag

/

LPL

Py
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Ve (r) = 2mw3r?.

@ large interactions: Thomas-Fermi profile of radius Rtr
Vext (Y + g [P = pyp = n(r) = [ — Vexe(r)]/g

\ K

u
. 1 /2
Inverted parabola of radius Rrrp = — '
wV m
LPL
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Time-dependent GPE

Study of the dynamics: out of equilibrium dynamics away from the
ground state.
Described by the time-dependent Gross-Pitaevskii equation

2v72
—ihOw) = VT Vet (1) + g [0

LPL

Py
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Dynamics
Hydrodynamics

Equivalent formulation of GPE with hydrodynamics equations:

Y(r,t) = \/n(r, t) )

(1) orn+V-(nv)=0 continuity equation

nA(vn) 1 )

om Vi T Emv2 + Vext + &0

(2) Euler equation
v = %V@ fluid velocity = V x v =0 irrotational flow

LPL

Py
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Hydrodynamics and superfluidty

The hydrodynamics equations describe
@ The condensate expansion in a time-of-flight
@ The collective modes (breathing mode, quadrupolar mode. . .)

@ More generally the excitations: phonons, solitons, free
particles, quantized vortices

@ The formation of vortices in a rotating fluid

A signature of superfluidity: a vortex
lattice in a rotating condensate.
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Dynamics
Homogeneous gas: the Bogolubov spectrum

Consider Veyy = 0. What is the small amplitude excitation
spectrum around equilibrium (ng = p/g)?
Write n = ng + dn and linearize for dn and v

(1) Oron+noV - (v) =0
h? A (6n)
=— - )
(2) mOov \Y < 3m 2no +g n)
Look for a plane wave solution §n = dnge™*~“t same for v:
(1) —mwon + mngk - (v) =0
h?k?
(2) —wmnov = —k < on+ gn05n>
4dm
2,4 2
= w2 = ﬂ —i—gnok— with gng=pu
4m? m LPL
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Dynamics

Bogolubov spectrum

Sound and particles

n2k*
L B
w 4m?2 + m

@ k — 0: w~ kc = sound waves with the speed of sound

Two relevant limits:

c= L ie © = mc?

252 . . - .
@ k— 00 hw~p+ hzf; = particle-like excitations on top of

the condensed particles bringing an energy u

Boundary between the two regimes: k ~ ¢! with
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Dynamics

Bogolubov spectrum

Sound and particles

R2k%
w=\—5+ —k
4m>  m
w
A 4
e /
_____ particles: fiw = u + 7 S
_____ sound: w = ck 7
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Dynamics

Bogolubov spectrum

Experimental observation

Selective excitation at (k,w) with Bragg diffraction

14 4 27R"

124 1ol

10d os . linear spectrum (phonons)
N T at small k: w(k) = ck
I 8 - 0.0 =" s
- 00 05 10 15 20 25 30 . -
& 6ot ia quadratic spectrum at
— Zzﬂ:R :g P |
= é é arge k

4-: N -

24 T . .

5 [Nir Davidson group, 2002]
0+ i r T T T T

k (um™)

Warning: Linear at small k for interacting gases only! LPL

Py
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Dynamics

Signatures of superfluidity

(1) Critical velocity

Consequence of Bogolubov dispersion E(p) > cp: Landau criterion
@ Consider an object of mass M and momentum P dragged
into the fluid at a speed v = P/M: can its motion be damped
by creating an excitation of momentum p* in the condensate?
@ Momentum and energy conservation:
Before: P, E = P?/2M + 0
After: P’ + p*, E = P"2/2M + E(p*)
e From P’ = P — p* it follows that
* *2
PMP =v-p"=E(p")+ 2PM

> E(p) = o'

@ Excitations are created only if v > c: existence of a critical
velocity (Warning: ¢ vanishes if g — 0)
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Dynamics

Signatures of superfluidity

(1) Critical velocity

Consequence of Bogolubov dispersion E(p) > cp: Landau criterion
@ Consider an object of mass M and momentum P dragged

into the fluid at a speed v = P/M: can its motion be damped

by creating an excitation of momentum p* in the condensate?

@ Momentum and energy conservation:
Before: P, E = P?/2M + 0 g a
After: P’ + p*, E = P"2/2M + E(p*)

e From P’ = P — p* it follows that

,_.
o
N

Temperature T (nK]
8 8
o

g

.

.
-+

P. p* p*2 0 0.5 1 1.5 2
VP (P") + 547 2 E(P7) 2 cp

@ Excitations are created only if v > c: existence of a critical
velocity (Warning: ¢ vanishes if g — 0)
[Dalibard group 2012] EEY
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Dynamics

Signatures of superfluidity

(2) Quantized vortices

@ V x v =0 unless at positions r, such that n(r,) =0

@ Around such a point r, =0, 1(r) ~ \/nge
= rotation with 1/r velocity field v = ey

@ ¢ is uniquely defined = ¢ € Z
h
° nggv-ds:éﬂ, el
the fluid rotates with a quantized circulation

@ Size of the hole: v > ¢ for r < miczf
= healing length &

e Kinetic energy of a vortex: Ey, o £2

e Multiply charged vortices |¢| > 1 are unstable
= Vortices arrange into an Abrikosov lattice

LPL

Py
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Dynamics

Dynamics of the trapped Bose gas

Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a spherical harmonic
trap (large scale). We start from the hydrodynamics equations:

(1) Orn+V-(nv)=0
_ h2 A(\/ﬁ) 1 2 1 2.2
(2) moyv = —V (—mﬁ+2mv +§w rF+gn—p

LPL

Py
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Dynamics

Dynamics of the trapped Bose gas

Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a spherical harmonic
trap (large scale). We start from the hydrodynamics equations:

(1) Orn+V-(nv)=0
_ h2 A(\/ﬁ) 1 2 1 2.2
(2) moyv = —V (—mﬁ+2mv +§w rF+gn—p

o Neglect quantum pressure

LPL
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Dynamics

Dynamics of the trapped Bose gas

Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a spherical harmonic
trap (large scale). We start from the hydrodynamics equations:

(1) Orn+V-(nv)=0
_ h2 A(\/ﬁ) 1 2 1 2.2
(2) moyv = —V (—mﬁ+2mv +§w rF+gn—p

o Neglect quantum pressure
o Linearize around the Thomas-Fermi solution no(1 — r?/R?)

LPL

Py
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Dynamics

Dynamics of the trapped Bose gas

Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a spherical harmonic
trap (large scale). We start from the hydrodynamics equations:

(1) Otn+ V- (nv) =0
INVO ! 1, u)

Ve + wr2—|—gn—

— _ 2=
(2) mov = V( om o —|—2m 5

o Neglect quantum pressure
o Linearize around the Thomas-Fermi solution no(1 — r?/R?)
@ Eliminate v and get

2
2¢ _ 2 &Mo _ 2
070n = —wén=V [ - (1 - R2> Vén] = V(c*(r)Vén)

LPL

Py
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Dynamics

Dynamics of the trapped Bose gas

Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a spherical harmonic
trap (large scale). We start from the hydrodynamics equations:

(1) Orn+V-(nv)=0
h? A 1 1
(2) moyv = =V ( >m \(\[nf) +2mv2+2w2r2+gn—ﬂ>
o Neglect quantum pressure

Linearize around the Thomas-Fermi solution ng(1 — r?/R?)
Eliminate v and get

e o

2
9260 = —w26n =V [g”o (1 - R) Vén] = V(c*(r)Vén)

m

e 3D:n, £, m quantum numbers: dn(r) = szn)(r/R)rZng(H@)
Get w(n, ) = wo [2n2+2n€+3n+€]1/2
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Dynamics

Dynamics of the trapped Bose gas

Excitation spectrum and collective modes

@ Quantized excitation spectrum

@ Example for the isotropic 2D gas: n, m are good quantum
numbers: w(n, m) = wo [2n% + 2n|m| + 2n + ]m|]1/2

@ Full spectrum:

/
8
6 red line: gives the critical

. velocity, related to surface modes
[Anglin2001]

Excitation energy

o 5 10 18 20 25 30
Quantum number m

LPL

Py
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Dynamics

Dynamics of the trapped Bose gas

Excitation spectrum and collective modes

@ Quantized excitation spectrum
@ Example for the isotropic 2D gas: n, m are good quantum
numbers: w(n, m) = wo [2n% + 2n|m| + 2n + ]m|]1/2

o Full spectrum: - monopole P 1 K
n=1m=0: X . y
b ' 2

superfluid and thermal

¢ signature of the EOS ;
2 - quadrupole
n=0,m=+2 b . 4
0 superfluid only !
0 5
m

- scissors for wy # wy,

- dipole mode n =0, m =1, both )
superfluid only

superfluid and thermal: centre of
mass oscillation
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Dynamics

Signatures of superfluidty

(3) Specific collective modes

Specific modes of a superfluid gas: quadrupole mode, scissors
mode: oscillation of (xy) o # in an anisotropic harmonic trap
wx 7# wy, = Use the scissors mode to characterize a superfluid

dilute gas [DGO Stringari 1999, Foot2000]

@ no scissors mode in the thermal phase in
the collisionless regime, only beat notes
of harmonic modes w4 = wy + w,

@ scissors mode expected at

Wse = (/w2 + Cu)2, for a superfluid

o e
e s w0 oo
=
e

R EEEEEEEE]
Time (ms)

B EEEEEEEEEEEEE]
‘Time (ms)
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Dynamics
Summary

e BEC occurs below T¢ (or above N¢) in a 3D box or in a
harmonic trap in 2D or 3D

@ The dynamics of the condensate is captured in the mean-field
regime by GPE or the hydrodynamics equations

@ A weakly interacting BEC is a superfluid
@ Superfluidity should be probed dynamically
@ Signatures include critical velocity, vortices, collective modes

Next lecture: adiabatic potentials for the study of collective
modes.

LPL
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