Lecture 1: Hydrodynamics in quantum gases

Hélène Perrin

Laboratoire de physique des lasers CNRS-Université Paris 13 Sorbonne Paris Cité

Vortex Dynamics, Turbulence and Related Phenomena in Quantum Fluids — Natal, June 24-28, 2019

Outline of the course

- Lecture 1: Bose-Einstein condensation, superfluid hydrodynamics and collective modes
- Lecture 2: Adiabatic potentials for confining quantum gases
- Lecture 3: Superfluid dynamics at the bottom of a bubble trap

Outline of the course

- Lecture 1: Bose-Einstein condensation, superfluid hydrodynamics and collective modes
- Lecture 2: Adiabatic potentials for confining quantum gases
- Lecture 3: Superfluid dynamics at the bottom of a bubble trap

- control of the temperature 1 nK 1 μ K
- interaction strength: scattering length a

- control of the temperature 1 nK 1 μ K
- interaction strength: scattering length a
- confinement geometry
- periodic potentials (optical lattices)
- low dimensional systems (1D, 2D)

- control of the temperature 1 nK 1 μ K
- interaction strength: scattering length a
- confinement geometry
- periodic potentials (optical lattices)
- low dimensional systems (1D, 2D)
- several internal states, bosons or fermions
- easy optical detection

Quantum gases benefit from a high degree of control of their external and internal degrees of freedom:

- control of the temperature 1 nK 1 μ K
- interaction strength: scattering length a
- confinement geometry
- periodic potentials (optical lattices)
- low dimensional systems (1D, 2D)
- several internal states, bosons or fermions
- easy optical detection

 \Rightarrow an ideal system for the study of superfluid dynamics.

References for the lecture

- F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, *Theory* of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. **71**, 463 (1999)
- C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge (2008)
- Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, Oxford (2003)
- Lev Pitaevskii and Sandro Stringari, Bose-Einstein Condensation and Superfluidity, Oxford (2016)

Outline

Interacting Bose gases: GPE

Bosons and fermions

Average occupation number of the quantum states:

 $\beta = 1/k_BT$; μ : chemical potential

Fermions at low temperature

Degenerate fermions: the Fermi sea (not a phase transition)

Bosons at low temperature

- Chemical potential for non interacting bosons: µ < E_i for all states i to keep f(E_i) ≥ 0 ⇒ µ < E₀ of ground state
- Number of particles in excited states N':

$$N' = \sum_{i \neq 0} \frac{1}{e^{\beta(E_i - \mu)} - 1} < N'_{\max}(T) = \sum_{i \neq 0} \frac{1}{e^{\beta(E_i - E_0)} - 1}$$

- If this sum is finite, N' is bounded by $N'_{max}(T)$ \Rightarrow saturation of the excited states
- If $N > N'_{\max}(T)$, $N_0 = N N'$ is macroscopic
- Bose-Einstein condensation for $N > N_C(T) \simeq N'_{max}(T)$
- Equivalently $T_C(N)$ defined by $N_C(T_C) = N$

Bose-Einstein condensation

Bose-Einstein condensation: saturation of the number of particles in excited states N' and macroscopic accumulation $N_0 \sim N$ of particles in the ground state for $T < T_C(N)$ or $N > N_C(T)$

Does Bose-Einstein condensation occur?

- The convergence of the sum on N_i depends on the density of states ρ(ε)
- An important particular case: power law density of state $\rho(\varepsilon) \propto (\varepsilon \varepsilon_0)^k$ with $\varepsilon > \varepsilon_0$

$$N_C(T) \propto \sum_{n=1}^{\infty} \int_0^{\infty} \varepsilon^k e^{-n\beta\varepsilon} d\varepsilon \quad \propto \quad (k_B T)^{k+1} \sum_{n=1}^{\infty} \frac{1}{n^{k+1}}$$

- Converges for k > 0.
- Fraction of condensed particles:

$$N_C(T_C) = N \implies \frac{N_0}{N} = 1 - \left(\frac{T}{T_C}\right)^{k+1}$$

Bose-Einstein condensation in a harmonic trap

- In a harmonic trap ω₀ in dimension D, ρ(E) ∝ E^{D-1}
 ⇒ power law with k = D − 1
- BEC occurs for D > 1 i.e. D = 2 or D = 3 [Bagnato 1987]

3D harmonic trap: $k_B T_C = \hbar \omega_0 N^{1/3} \gg \hbar \omega_0$

Cornell & Wieman Science 1995

Bose-Einstein condensation in a 3D box

DOS in a box in dimension D: $\rho(E) \propto E^{D/2-1} \Rightarrow \text{only } D = 3!$ In a 3D box BEC for $n\lambda_T^3 > 2.6$ with $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$: $N_C \propto T^{3/2}$

measure N_0/N , 3D box potential ³⁹K, tunable interactions PRL **110**,200406 (2013) Hadzibabic group

Saturation of thermal particles see also PRL **106**, 230401 (2011)

Interpretation of critical temperature

Degeneracy criterion: more than one particle per quantum state. Size of a state: $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$ thermal de Broglie wavelength

Problem: do interactions modify this picture of accumulation in a single-particle state? $H = \sum_{i=1}^{N} h_0^{(i)} + \sum_{i < j} V(r_i - r_j)$ **Test:** interferences between condensates

MIT 1996

- the coherence length is the cloud size
- weak interactions (dilute gas)
- a mean field description is appropriate

How to find the ground state of $H = \sum_{i=1}^{N} h_0^{(i)} + \sum_{i < j} V(r_i - r_j)$?

• assume weak interactions (dilute gas)

How to find the ground state of $H = \sum_{i=1}^{N} h_0^{(i)} + \sum_{i < j} V(r_i - r_j)$?

- assume weak interactions (dilute gas)
- mean field description: assume the same wavefunction $\psi(\mathbf{r})$ for all atoms i.e. $|\Psi\rangle = |\psi\rangle_1 \otimes \cdots \otimes |\psi\rangle_N$, $\psi(\mathbf{r})$ to be found

How to find the ground state of $H = \sum_{i=1}^{N} h_0^{(i)} + \sum_{i < j} V(r_i - r_j)$?

- assume weak interactions (dilute gas)
- mean field description: assume the same wavefunction $\psi(\mathbf{r})$ for all atoms i.e. $|\Psi\rangle = |\psi\rangle_1 \otimes \cdots \otimes |\psi\rangle_N$, $\psi(\mathbf{r})$ to be found
- \bullet minimize the energy functional $\langle \Psi | H | \Psi \rangle$ to find ψ

How to find the ground state of $H = \sum_{i=1}^{N} h_0^{(i)} + \sum_{i < j} V(r_i - r_j)$?

- assume weak interactions (dilute gas)
- mean field description: assume the same wavefunction $\psi(\mathbf{r})$ for all atoms i.e. $|\Psi\rangle = |\psi\rangle_1 \otimes \cdots \otimes |\psi\rangle_N$, $\psi(\mathbf{r})$ to be found
- \bullet minimize the energy functional $\langle \Psi | H | \Psi \rangle$ to find ψ
- ullet this yields the Gross-Pitaevskii equation (GPE) for ψ

 $g = \frac{4\pi \hbar^2 a}{m}$ interaction coupling constant, we assume here g > 0a scattering length

 μ chemical potential = cost to add a particle

Solution of GPE in a box

Consider a box potential of size L: $V_{\text{ext}}(\mathbf{r}) = 0$ + hard wall b.c.

• vanishing interactions (Schrödinger): $-\frac{\hbar^2 \nabla^2 \psi}{2m} = \mu \psi$ $\psi(x) \sim \sin(\pi x/L)$ ground state of $h^{(0)}$ \Rightarrow density $\propto \sin^2(\pi x/L)$

Solution of GPE in a box

Consider a box potential of size L: $V_{\text{ext}}(\mathbf{r}) = 0$ + hard wall b.c.

• increasing interactions: $-\frac{\hbar^2 \nabla^2 \psi}{2m} + g |\psi|^2 \psi = \mu \psi$ density flattens healing length to recover from the edge

Solution of GPE in a box

Consider a box potential of size L: $V_{\text{ext}}(\mathbf{r}) = 0$ + hard wall b.c.

• large interactions: $g |\psi|^2 \psi \simeq \mu \psi \Rightarrow n_0 = \mu/g \simeq N/L$ except at the edges within the healing length

Close to the edge: $\psi(x) \simeq \sqrt{n_0} \tanh[x/(\xi\sqrt{2})]$

$$\xi = \frac{\hbar}{\sqrt{2m\mu}}$$

Solution of GPE in a harmonic trap

Consider now a harmonic potential $V_{\text{ext}}(\mathbf{r}) = \frac{1}{2}m\omega_0^2 r^2$.

• weak interactions: Gaussian ground state of $h^{(0)}$ with size $a_0 - \frac{\hbar^2 \nabla^2 \psi}{2m} + V_{\text{ext}}(\mathbf{r})\psi = \mu \psi$

Solution of GPE in a harmonic trap

Consider now a harmonic potential $V_{\text{ext}}(\mathbf{r}) = \frac{1}{2}m\omega_0^2 r^2$.

• increase interactions: deformed Gaussian state with size > $a_0 - \frac{\hbar^2 \nabla^2 \psi}{2m} + V_{\text{ext}}(\mathbf{r})\psi + g |\psi|^2 \psi = \mu \psi$

Solution of GPE in a harmonic trap

Consider now a harmonic potential $V_{\rm ext}(\mathbf{r}) = \frac{1}{2}m\omega_0^2 r^2$.

• increase interactions: non-Gaussian state with size $\gg a_0$

Solution of GPE in a harmonic trap

Consider now a harmonic potential $V_{\text{ext}}(\mathbf{r}) = \frac{1}{2}m\omega_0^2 r^2$.

• large interactions: Thomas-Fermi profile of radius R_{TF} $V_{\text{ext}}(\mathbf{r})\psi + g |\psi|^2 \psi \simeq \mu \psi \Rightarrow n(r) = [\mu - V_{\text{ext}}(\mathbf{r})]/g$

Time-dependent GPE

Study of the dynamics: out of equilibrium dynamics away from the ground state.

Described by the time-dependent Gross-Pitaevskii equation

$$-i\hbar\partial_t\psi = -\frac{\hbar^2\nabla^2\psi}{2m} + V_{\rm ext}(\mathbf{r})\psi + \mathbf{g}\,|\psi|^2\psi$$

Hydrodynamics

Equivalent formulation of GPE with hydrodynamics equations: $\psi(\mathbf{r}, t) = \sqrt{n(\mathbf{r}, t)} e^{i\theta(\mathbf{r}, t)}$

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{n}\mathbf{v}) = 0$$
 continuity equation
(2) $m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta(\sqrt{n})}{\sqrt{n}} + \frac{1}{2}m\mathbf{v}^2 + V_{\text{ext}} + g\mathbf{n} \right)$

(2) Euler equation

 $\mathbf{v} = \frac{\hbar}{m} \nabla \theta$ fluid velocity $\Rightarrow \nabla \times \mathbf{v} = 0$ irrotational flow

Hydrodynamics and superfluidty

The hydrodynamics equations describe

- The condensate expansion in a time-of-flight
- The collective modes (breathing mode, quadrupolar mode...)
- More generally the excitations: phonons, solitons, free particles, quantized vortices
- The formation of vortices in a rotating fluid

A signature of superfluidity: a vortex lattice in a rotating condensate.

Homogeneous gas: the Bogolubov spectrum

Consider $V_{\text{ext}} = 0$. What is the small amplitude excitation spectrum around equilibrium $(n_0 = \mu/g)$? Write $n = n_0 + \delta n$ and linearize for δn and **v**

(1)
$$\partial_t \delta n + n_0 \nabla \cdot (\mathbf{v}) = 0$$

(2) $m \partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta(\delta n)}{2n_0} + g \delta n \right)$

Look for a plane wave solution $\delta n = \delta n_0 e^{ikz - i\omega t}$, same for v:

(1)
$$-m\omega\delta n + mn_0\mathbf{k} \cdot (\mathbf{v}) = 0$$

(2)
$$-\omega mn_0\mathbf{v} = -\mathbf{k} \left(\frac{\hbar^2 k^2}{4m}\delta n + gn_0\delta n\right)$$

$$\Rightarrow \omega^2 = \frac{\hbar^2 k^4}{4m^2} + gn_0 \frac{k^2}{m} \quad \text{with} \quad gn_0 = \mu$$

Bogolubov spectrum Sound and particles

$$\omega = \sqrt{\frac{\hbar^2 k^4}{4m^2} + \frac{\mu}{m}k^2}$$

Two relevant limits:

• $k \rightarrow 0$: $\omega \simeq kc \Rightarrow$ sound waves with the speed of sound

$$c = \sqrt{\frac{\mu}{m}}$$
 i.e. $\mu = mc^2$

k → ∞: ħω ≃ μ + ^{ħ²k²}/_{2m} ⇒ particle-like excitations on top of the condensed particles bringing an energy μ
 Boundary between the two regimes: k ≃ ξ⁻¹ with

$$\xi = \frac{\hbar}{\sqrt{2m\mu}} = \frac{\hbar}{mc}$$

Bogolubov spectrum Sound and particles

$$\omega = \sqrt{\frac{\hbar^2 k^4}{4m^2} + \frac{\mu}{m}k^2}$$

Bogolubov spectrum Experimental observation

Selective excitation at (k, ω) with Bragg diffraction

Warning: Linear at small k for interacting gases only!

Signatures of superfluidity (1) Critical velocity

Consequence of Bogolubov dispersion $E(p) \ge cp$: Landau criterion

- Consider an object of mass M and momentum P dragged into the fluid at a speed v = P/M: can its motion be damped by creating an excitation of momentum p* in the condensate?
- Momentum and energy conservation: Before: P, $E = P^2/2M + 0$ After: $P' + p^*$, $E = P'^2/2M + E(p^*)$

• From $P' = P - p^*$ it follows that

$$\frac{P \cdot p^*}{M} = v \cdot p^* = E(p^*) + \frac{p^{*2}}{2M} \ge E(p^*) \ge cp^*$$

Excitations are created only if v ≥ c: existence of a critical velocity (Warning: c vanishes if g → 0)

Signatures of superfluidity (1) Critical velocity

Consequence of Bogolubov dispersion $E(p) \ge cp$: Landau criterion

- Consider an object of mass M and momentum P dragged into the fluid at a speed v = P/M: can its motion be damped by creating an excitation of momentum p* in the condensate?
- Momentum and energy conservation: Before: $P, E = P^2/2M + 0$ After: $P' + p^*, E = P'^2/2M + E(p^*)$ • From $P' = P - p^*$ it follows that $\frac{P \cdot p^*}{M} = v \cdot p^* = E(p^*) + \frac{p^{*2}}{2M} \ge E(p^*) \ge cp^*$
- Excitations are created only if v ≥ c: existence of a critical velocity (Warning: c vanishes if g → 0)

[Dalibard group 2012]

Signatures of superfluidity (2) Quantized vortices

- $\nabla \times v = 0$ unless at positions $\mathbf{r_v}$ such that $n(\mathbf{r_v}) = 0$
- Around such a point $\mathbf{r}_{\mathbf{v}} = 0$, $\psi(\mathbf{r}) \simeq \sqrt{n_0} e^{i\ell\theta}$ \Rightarrow rotation with 1/r velocity field $\mathbf{v} = \frac{\hbar}{m} \frac{\ell}{r} \mathbf{e}_{\theta}$
- ψ is uniquely defined $\Rightarrow \ell \in \mathbb{Z}$

•
$$\mathcal{C} = \oint \mathbf{v} \cdot d\mathbf{s} = \mathbf{\ell} \frac{\mathbf{h}}{\mathbf{M}}, \quad \mathbf{\ell} \in \mathbb{Z}$$

the fluid rotates with a quantized circulation

- Size of the hole: v > c for $r < \frac{\hbar}{mc} = \xi$ \Rightarrow healing length ξ
- Kinetic energy of a vortex: $\textit{E}_{\rm kin} \propto \ell^2$
- Multiply charged vortices |ℓ| > 1 are unstable
 ⇒ Vortices arrange into an Abrikosov lattice

Derivation of quantized, low energy modes in a spherical harmonic trap (large scale). We start from the hydrodynamics equations:

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{n}\mathbf{v}) = 0$$

(2) $m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta(\sqrt{n})}{\sqrt{n}} + \frac{1}{2}m\mathbf{v}^2 + \frac{1}{2}\omega^2 r^2 + g\mathbf{n} - \mu \right)$

Derivation of quantized, low energy modes in a spherical harmonic trap (large scale). We start from the hydrodynamics equations:

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{nv}) = 0$$

(2)
$$m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta\left(\sqrt{n}\right)}{\sqrt{n}} + \frac{1}{2}m\mathbf{v}^2 + \frac{1}{2}\omega^2 r^2 + g\mathbf{n} - \mu \right)$$

• Neglect quantum pressure

Derivation of quantized, low energy modes in a spherical harmonic trap (large scale). We start from the hydrodynamics equations:

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{nv}) = 0$$

(2)
$$m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta\left(\sqrt{n}\right)}{\sqrt{n}} + \frac{1}{2}m\mathbf{v}^2 + \frac{1}{2}\omega^2 r^2 + g\mathbf{n} - \mu \right)$$

- Neglect quantum pressure
- Linearize around the Thomas-Fermi solution $n_0(1 r^2/R^2)$

Derivation of quantized, low energy modes in a spherical harmonic trap (large scale). We start from the hydrodynamics equations:

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{nv}) = 0$$

(2)
$$m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta\left(\sqrt{n}\right)}{\sqrt{n}} + \frac{1}{2}m\mathbf{v}^2 + \frac{1}{2}\omega^2 r^2 + g\mathbf{n} - \mu \right)$$

- Neglect quantum pressure
- Linearize around the Thomas-Fermi solution $n_0(1 r^2/R^2)$
- Eliminate v and get

$$\partial_t^2 \delta n = -\omega^2 \delta n = \nabla \left[\frac{gn_0}{m} \left(1 - \frac{r^2}{R^2} \right) \nabla \delta n \right] = \nabla (c^2(\mathbf{r}) \nabla \delta n)$$

Derivation of quantized, low energy modes in a spherical harmonic trap (large scale). We start from the hydrodynamics equations:

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{nv}) = 0$$

(2)
$$m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta\left(\sqrt{n}\right)}{\sqrt{n}} + \frac{1}{2}m\mathbf{v}^2 + \frac{1}{2}\omega^2 r^2 + g\mathbf{n} - \mu \right)$$

- Neglect quantum pressure
- Linearize around the Thomas-Fermi solution $n_0(1 r^2/R^2)$
- Eliminate v and get

$$\partial_t^2 \delta n = -\omega^2 \delta n = \nabla \left[\frac{g n_0}{m} \left(1 - \frac{r^2}{R^2} \right) \nabla \delta n \right] = \nabla (c^2(\mathbf{r}) \nabla \delta n)$$

• 3D:*n*, ℓ , *m* quantum numbers: $\delta n(\mathbf{r}) = P_{\ell}^{(2n)}(r/R)r^{\ell}Y_{\ell m}(\theta,\phi)$

• Get $\omega(n, \ell) = \omega_0 \left[2n^2 + 2n\ell + 3n + \ell \right]^{1/2}$

Dynamics of the trapped Bose gas Excitation spectrum and collective modes

- Quantized excitation spectrum
- Example for the isotropic 2D gas: *n*, *m* are good quantum numbers: $\omega(n, m) = \omega_0 \left[2n^2 + 2n|m| + 2n + |m|\right]^{1/2}$
- Full spectrum:

red line: gives the critical velocity, related to surface modes [Anglin2001]

Dynamics of the trapped Bose gas Excitation spectrum and collective modes

- Quantized excitation spectrum
- Example for the isotropic 2D gas: *n*, *m* are good quantum numbers: $\omega(n, m) = \omega_0 \left[2n^2 + 2n|m| + 2n + |m|\right]^{1/2}$
- Full spectrum:

- dipole mode n = 0, m = 1, both superfluid and thermal: centre of mass oscillation - monopole

$$n = 1, m = 0$$
:

superfluid and thermal signature of the EOS

- quadrupole $n = 0, m = \pm 2$ superfluid only

- scissors for $\omega_x \neq \omega_y$ superfluid only

Signatures of superfluidty (3) Specific collective modes

Specific modes of a superfluid gas: quadrupole mode, scissors mode: oscillation of $\langle xy \rangle \propto \theta$ in an **anisotropic** harmonic trap $\omega_x \neq \omega_y \Rightarrow$ Use the scissors mode to characterize a superfluid dilute gas [DGO Stringari 1999, Foot2000]

• no scissors mode in the thermal phase in the **collisionless** regime, only beat notes of harmonic modes $\omega_{\pm} = \omega_x \pm \omega_y$

• scissors mode expected at $\omega_{\rm sc} = \sqrt{\omega_x^2 + \omega_y^2}$ for a superfluid

Summary

- BEC occurs below T_C (or above N_C) in a 3D box or in a harmonic trap in 2D or 3D
- The dynamics of the condensate is captured in the mean-field regime by GPE or the hydrodynamics equations
- A weakly interacting BEC is a superfluid
- Superfluidity should be probed dynamically
- Signatures include critical velocity, vortices, collective modes

Next lecture: **adiabatic potentials** for the study of collective modes.

