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Lecture 1

Light forces

The research on cold atoms, molecules and ions was triggered by the development of
lasers [1]. In 1987, the first magneto-optical trap (MOT) was demonstrated [2]. Since
then, the achievement of laser cooling [3, 4] and trapping enabled the fast development
of ultra high resolution spectroscopy on atoms and ions, dramatic improvement of time
and frequency standards, the application of atom interferometry to inertial sensors [5]
and the observation of Bose-Einstein condensation (BEC) [6–8], opening a new area of
interdisciplinary physics. The importance of laser cooling techniques in this growing field
was recognised shortly after the achievement of BEC in 1995, by the 1997 Nobel prize
awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips [9–11].

Light forces are at the basis of atomic position and momentum manipulation with
light. The present lecture is devoted to this subject, and is inspired by Jean Dalibard’s
lectures at École normale supérieure [12]. The proceedings of the Les Houches school on
quantum metrology 2007 gives a very brief overview of the topic [13]. For a deeper insight,
the following general references on laser cooling and trapping may be useful:

1. Cohen-Tannoudji’s and Phillips’ lectures in Les Houches, 1990 [14,15]

2. Cohen-Tannoudji’s lectures at Collège de France [16] (in french)

3. the book of Metcalf and van der Straten [17]

4. on atom-photon interactions: the book of Cohen-Tannoudji et al. [18]

5. on dipole forces: the review paper by Grimm, Weidemüller and Ovchinnikov [19]

6. from optical pumping to quantum degenerate gases: a very complete book by Cohen-
Tannoudji and Guéry-Odelin inspired by the Collège de France lectures [20].

The first deflection of neutral particles by near resonant light was observed in 1933 by
Otto Frisch, on a beam of sodium atoms irradiated by an emission lamp [21]. However,
the real development of atom manipulation with laser light started when lasers became
available.

To understand how light can be used to manipulate the external degrees of freedom of
atoms, let us estimate the acceleration undergone by an atom irradiated by a laser. Each
time a photon of wavelength λL is absorbed or emitted, due to momentum conservation
the atomic velocity changes by the recoil velocity vrec, defined by

vrec =
~kL
M

with kL =
2π

λL
(1)

where M is the atomic mass. For atoms in near resonant light, photons are scattered at
a rate close to Γ, the inverse lifetime of the excited state. For alkali, one has Γ−1 ∼ 30 ns
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typically, and vrec ranges between 3 and 30 mm·s−1. The acceleration corresponding to
an irradiation by a resonant laser is then of order a ' Γvrec ' 105 m·s−2, four orders of
magnitude larger than the Earth acceleration! This strong acceleration enables to stop an
atom moving at 300 m·s−1 within 3 ms, over 50 cm. Note that the Doppler shift −k · v
makes the process a little more subtle than that.

1 Atom-light interaction

1.1 A two-level model

In lecture 1, we will consider the interaction of an atom with a near resonant laser light,
of frequency ωL.

~ωi
e Γ

~ω ~ω0

g

The atom has many electronic transitions of frequencies
ωi. The two-level approximation is valid if the detuning
δ = ωL − ω0 to a particular transition of frequency ω0 is
such that |δ| � ω0, ωL, |ωi − ωL| for all i 6= 0. We then
restrict the discussion to these two levels.

N.B.1: Later on, the case of a degenerate state will be examined, with a J 6= 0 internal
structure.
N.B.2: If the two-level condition is not fulfilled, the interaction of the ground state with
all the other levels have to be considered. It may be the case for the calculation of light
shifts induced by a far off resonant laser [19].

The two-level atom is described by its transition frequency ω0, or wavelength λ0 =
2πc/ω0, and the lifetime of the excited state Γ−1 due to the coupling with the electromag-
netic vacuum. It is irradiated with a laser of frequency ωL and wavelength λL. For most
atoms which are laser cooled, λL is in the visible or near infra-red region. The coupling
between atom and laser is ensured by the (electric) dipolar interaction.

1.2 Dipolar interaction

An atom has no permanent dipole which could interact with the light field. However, the
laser field itself induces an atomic dipole D which in turn interacts with the light field.
The dipolar interaction energy reads −D ·E. The dipolar operator makes the atom change
its internal state. It can be written

D̂ = d|e〉〈g|+ d∗|g〉〈e|, (2)

where d is the reduced dipole:

d = 〈e|D̂|g〉 d∗ = 〈g|D̂|e〉 (3)

In the rest of the lecture, we remain in the dipolar approximation and will not consider
other coupling processes between atom and light.
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1.3 Laser electric field

A laser field contains a huge number of photons in the same mode. The Poissonian
photon number fluctuations around the mean value n̄ are of order ∆n =

√
n̄, very small as

compared to n̄. It is thus relevant to describe the laser field by a classical time-dependent
field. A quantum description of the laser field will nevertheless be given in section 3.

EL(r, t) =
1

2
EL(r)

{
εL(r) e−iωLt e−iφ(r) + c.c.

}
(4)

The laser amplitude EL, polarisation εL and phase φ may depend on position r. The
coupling of the atom to this classical laser describes efficiently the absorption and stim-
ulated emission processes. The quantum fluctuations will be included in an additional
term describing quantum vacuum in the total Hamiltonian. This term is responsible for
spontaneous emission.

1.4 Hamiltonian of the three coupled systems

We finally deal with three coupled systems: laser, atom and quantum field.

Ω Γ

~ω ~ω0

EL V̂AL ĤA V̂AR ĤR

The total Hamiltonian reads

Ĥ = ĤA + ĤR + V̂AL + V̂AR, (5)

the four terms being discussed in the following.

1.4.1 Hamiltonian of the isolated atom

The operators of position and momentum are labelled R̂ and P̂. The atomic Hamiltonian
is the sum of the internal and the kinetic terms.

ĤA = ~ω0|e〉〈e|+
P̂

2M
(6)

where the energy of the ground state |g〉 is taken as the origin of energies.
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1.4.2 Hamiltonian of the quantum field

If the quantum modes of the field are labelled by ` = (k, ε), the energy of the quantum
modes is given by

ĤR =
∑
`

~ω` â†`â` . (7)

1.4.3 Atom to quantum field coupling

The coupling between the atom and the quantum field through the induced dipole is
denoted as V̂AR. It is responsible for spontaneous emission. It is not necessary to give an
explicit form of this term here.

1.4.4 Atom – laser coupling

The coupling to the classical laser field given in Eq.(4) is due to the dipole operator (2).
The scalar product of (2) and (4) yields four terms, which can be expressed as a sum of
two terms, a resonant term V̂ res

AL and a non resonant term V̂ non res
AL :

V̂AL = −D̂ ·EL(R̂, t) = V̂ res
AL + V̂ non res

AL

V̂ res
AL = −1

2

(
d · ε(R̂)

)
EL(R̂) |e〉〈g| e−iωLt e−iφ(R̂) + h.c. (8)

V̂ non res
AL = −1

2

(
d · ε∗(R̂)

)
E∗L(R̂) |e〉〈g| eiωLt eiφ(R̂) + h.c.

At this stage, we introduce the Rabi frequency Ω1(r) defined by

~Ω1(r) = − (d · ε(r)) EL(r) . (9)

The time origin is chosen such that Ω1 is real. The atom – laser resonant coupling can
then be written as

V̂ res
AL =

~Ω1(R̂)

2

{
|e〉〈g| e−iωLt e−iφ(R̂) + h.c.

}
(10)

The Rabi frequency is the oscillation frequency between |g〉 and |e〉 at resonance in the
strong coupling regime.

2 Light forces

2.1 Orders of magnitude. Approximations

2.1.1 Rotating wave approximation

Let us first consider the two contributions to the atom – laser coupling. In the interaction
picture, that is in the frame rotating at frequency ω0 due to the internal energy of the
state |e〉, the term V̂ res

AL oscillates at the frequency δ = ωL − ω0. It is slowly evolving as
compared to ω0 or ωL.

On the contrary, V̂ non res
AL oscillates at frequency ω0+ωL, much larger than δ. It has then

an amplitude smaller by a factor |ω0−ωL|/(ω0 +ωL), and is negligible as compared to the
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resonant process. In the following V̂ non res
AL is ignored: V̂AL = V̂ res

AL . This approximation is
known as the rotating wave approximation (RWA). It holds provided that |δ|,Ω1 � ω0, ωL.
N.B.: RWA is wrong in the case of a very far detuned laser, like a CO2 laser at 10 µm, and
both terms then contribute almost equally to the light shift [19]. For λL = 532 nm and
rubidium atoms with λ0 = 780 nm, the correction due to the non-resonant term amounts
to 20%. The non-resonant term enhances the effect of the resonant term if δ < 0, whereas
it decreases its effect if δ > 0.
N.B.: If the laser field is described by a quantum field with the operators â†L and âL,

V̂ res
AL is proportional to |g〉〈e|â†L + |e〉〈g|âL and corresponds to resonant processes where

either a photon is emitted and the atom changes its internal state from |e〉 to |g〉, or
a photon is absorbed and the atom state changes from |g〉 to |e〉. On the other hand,

V̂ non res
AL ∝ |e〉〈g|â†L + |g〉〈e|âL: simultaneous emission of a photon of frequency ωL and

change in the internal atomic state from |g〉 to |e〉, or absorption of a photon and change
from |e〉 to |g〉.

2.1.2 Time scales

The atomic external and internal variables evolve at different time scales, text and tint.
tint is the time necessary for reaching a steady state of the internal matrix density

operator σ̂ (population and coherences). It is related to the lifetime of the excited state,
involved in the optical Bloch equations (OBE) describing the internal states dynamics.
Hence, its order of magnitude is Γ−1, that is 10 to 100 ns.

text is the time necessary to change in a measurable way the external atomic variables.
It can be defined for example as the time after which an atom undergoing an acceleration
a = Γvrec due to a resonant light pressure becomes non resonant, due to the Doppler
effect. With this definition, it is the time after which the velocity v satisfies kLv = Γ, with
v = Γvrectext.

text =
1

kLvrec
=

~
Mv2

rec

=
~

2Erec
=

1

2ωrec

where Erec = Mv2
rec/2 is the recoil energy and ωrec = Erec/~ the recoil frequency. For

alkali, the recoil frequency ωrec/(2π) is a few kHz, which makes text of order a few tens of
microseconds.

For alkali, as well as for most laser cooled species, one has text � tint. For rubidium,
λ0 = 780 nm, Γ = 2π× 6 MHz and M = 1.44× 10−25 kg which yields vrec = 5.89 mm·s−1

and text/tint ' 800. The condition text � tint, or

~Γ� ωrec (11)

is called the broad band condition. When it is satisfied, the two time scale clearly separate.
For describing the dynamics of the external state, the internal state can therefore be
considered as being in its steady state. In the following, the steady state value of the
dipole will thus be used for the calculation of the light force.
N.B.: There are cases for which the broad band condition is not fulfilled. Laser cooling can
be applied to narrow lines for which Γ < ωrec, allowing a sub-recoil Doppler cooling [22].
This case is beyond the objective of this short course.
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2.1.3 Semi-classical approximation

The external motion of the atom will be treated as classical, which means that the force
F is calculated at position r for a velocity v. This description is correct if the laser field
at the position of the atom is well defined, that is if the atomic position is known better
than the wavelength:

∆R� λL or ∆R� k−1
L .

In the same way, the velocity should be defined to better than Γ/kL for the frequency seen
by a single atom to be well defined:

kL∆v � Γ or ∆P �M
Γ

kL
.

As ∆R∆P > ~/2, these two conditions imply

~
2
�M

Γ

k2
L

or Γ�
~k2

L

2M
.

We recover the broad band condition Γ� ωrec. The semi-classical approximation is valid
down to very small velocities. From now on, we assume that the broad band condition is
satisfied and the semi-classical treatment of the external motion will be used.

2.2 The mean light force

To find the expression of the force exerted by the laser light onto the atom, let us write
the force operator in the Heisenberg representation. The only term in the Hamiltonian
which does not commute with R̂ is P̂2:

dR̂

dt
=

1

i~

[
R̂, Ĥ

]
=

1

i~

[
R̂, ĤA

]
=

P̂

M
. (12)

We recover the expression of the atomic velocity.
On the other hand, P̂ commutes with ĤA and ĤR but not with V̂AL and V̂AR:

F̂ =
dP̂

dt
=

1

i~

[
P̂, Ĥ

]
= −∇V̂AL −∇V̂AR . (13)

The mean force is then F = 〈F̂〉 = −〈∇V̂AL〉 − 〈∇V̂AR〉. The second term is zero, see [14]
p. 14-15. It is related to the fact that spontaneous emission occurs in random directions,
giving to the atom random momentum kicks with equal probabilities in the directions k
and −k. In average, the corresponding force is zero.
N.B.: The average is zero, while ∇V̂AR 6= 0. The fluctuations of this random force induce
a Brownian motion in momentum space and contribute to the final finite temperature that
can be reached with laser cooling.

With the notations r = 〈R̂〉 and p = 〈P̂〉, the mean force is, in the semi-classical
approximation:

F = −〈∇V̂AL〉 = 〈∇
(
D̂ ·EL(r, t)

)
〉 = ∇

 ∑
i=x,y,z

〈D̂iELi(r, t)〉


F =

∑
i=x,y,z

〈D̂i〉(t)∇ELi(r, t) . (14)
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Taking advantage of the different internal and external time scales, the dipole average
value 〈D̂i〉(t) can be replaced by its steady state:

F =
∑

i=x,y,z

〈D̂i〉st∇ELi(r, t) .

The mean stationary dipole 〈D̂i〉st is deduced from the optical Bloch equations on the
internal state density matrix operator σ̂:

i~
dσ̂

dt
= [ĤA + V̂AL, σ̂]− i~Γ̂σ̂, (15)

where the relaxation from |e〉 to |g〉 is taken into account through the operator Γ̂ [18].
Taking into account that the elements of σ̂ are linked through σgg+σee = 1 and σge = σ∗eg,
there are only two coupled equations:

σ̇ee = −Γσee + i
Ω1(r)

2

(
σeg e

iωLt eiφ(r) − σ∗eg e−iωLt e−iφ(r)
)

σ̇eg = −
(
iω0 +

Γ

2

)
σeg − i

Ω1(r)

2
(1− 2σee) e

−iωLt e−iφ(r) .

These equations imply three real variables. The stationary solution is conveniently found
by introducing three new real variables u, v and w defined by

u = 1
2

(
σ∗eg e

−iωLt e−iφ(r) + σeg e
iωLt eiφ(r)

)
v = 1

2i

(
σ∗eg e

−iωLt e−iφ(r) − σeg eiωLt eiφ(r)
)

w = 1
2(σee − σgg) = σee − 1

2

and satisfying the coupled equations
u̇ = −Γ

2u+ δv ,

v̇ = −Γ
2 v − δu− Ω1w ,

ẇ = −Γ
(
w + 1

2

)
+ Ω1v .

The stationary solution is

ust =
Ω1δ/2

Ω2
1

2 + δ2 + Γ2

4

,

vst =
Ω1Γ/4

Ω2
1

2 + δ2 + Γ2

4

,

wst +
1

2
= σee,st =

Ω2
1/4

Ω2
1

2 + δ2 + Γ2

4

.

The population in the excited state and the atomic dipole can be written in terms of the
saturation parameter s(r), defined by

s(r) =
Ω2

1(r)/2

δ2 +
Γ2

4

=
I/Is

1 +
4δ2

Γ2

. (16)
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Is is the saturation intensity1 Is = 2π2~cΓ/(3λ3
0), typically a few mW·cm−2. With this

definition, we can write

σee =
1

2

s(r)

1 + s(r)
, (17)

〈D̂〉 · ε(r) = 2d.ε(r)
s(r)

1 + s(r)

{
δ

Ω1(r)
cos [ωLt+ φ(r)]− Γ

2Ω1(r)
sin [ωLt+ φ(r)]

}
. (18)

The dipole has two components: a term in δ/Ω1 oscillating in phase with the electric
field, related to the real part of the polarisability which leads to a conservative force. On
resonance, this term is zero. The second term is in quadrature with the electric field,
proportional to Γ/(2Ω1). It is maximum on resonance and related to the imaginary part
of the polarisability, that is with absorption. It leads to a dissipative force.

The gradient applied on ELi gives a term in phase proportional to ∇Ω1 and a term
in quadrature proportional to ∇φ. After averaging over one period of the laser field, the
final expression of the total force is

F(r) = − s(r)

1 + s(r)

(
~δ

∇Ω1

Ω1(r)
+

~Γ

2
∇φ

)
. (19)

2.3 Interpretation of the mean force

The force is the sum of two contributions, corresponding to the dispersive and the absorp-
tive part of the atomic polarisability. In this section, we discuss these two parts separately.

2.3.1 Radiation pressure

Let us label as Fpr the term in the expression of the force that is proportional to the
gradient of the phase:

Fpr = −~Γ

2

s(r)

1 + s(r)
∇φ. (20)

To understand the origin of this force, let us consider the case of a plane wave, for which
Ω1 is uniform, and so is s. The phase φ(r) is equal to −kL · r for a plane wave of wave
vector kL, such that ∇φ = −kL. It yields

Fpr =
Γ

2

s

1 + s
~kL. (21)

As already seen, σee = 1
2

s
1+s is the population of the excited state, such that

Γsp =
Γ

2

s

1 + s
(22)

is the spontaneous scattering rate. The mean force is then simply Fpr = Γsp ~kL and is
due to the momentum transfer of one recoil ~kL each time a photon is absorbed from
the laser, which occurs at a rate Γsp. The spontaneously emitted photons are randomly
distributed in direction and do not contribute to the mean force. The force pushes the
atoms in the direction of the light wave vector, and for this reason is it called the radiation
pressure.

1We can also write this relation as
3λ2

0
2π

Is = ~ω0
Γ
2
: the saturation intensity is the maximum scattered

power divided by the resonant absorption cross section.
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Dependence on the intensity — On resonance, the saturation parameter is equal to
s = I/Is. The saturation intensity Is is characteristic of the transition, and measures how
much intensity is needed to reach the maximum scattering rate of Γ/2. For I � Is, the
radiation pressure saturates to its maximum value, Fpr = Γ

2~kL.

δ in units of Γ

Figure 1: Left: Dependence of the radiation pressure F/Fmax exerted by a plane wave on
the light intensity, on resonance δ = 0. For I � Is, it saturates to its maximum value,
Fmax = Γ

2~kL. Right: Dependence on the detuning, for different values of the intensity.
From bottom to top, I/Is = 0.1, 1, 10 and 100. The line broadening due to saturation is
clear on this graph. The lower Lorentzian has a full width at half maximum of about Γ.

Dependence on the detuning — The radiation pressure depends on the detuning
just as the scattering rate does: with a Lorentzian shape of full width at half maximum
(FWHM)

√
Γ2 + 2Ω2

1 = Γ
√

1 + I/Is. In the wings, that is for δ � Γ, the force scales as
1/δ2.

N.B.: If the line is shifted, for example by the Zeeman effect in the presence of a magnetic
field B, such that ω′0 = ω0 + gµBB/~, and (or) if the laser frequency is shifted by the
Doppler effect, the detuning δ must be replaced by δ′ = ωL − kL · v − ω′0, that is

δ′ = δ − kL · v −
gµB
~
B .

Application: the Zeeman slower — An important application of this large force
is the Zeeman slower, first demonstrated by W.D. Phillips, H. Metcalf and their col-
leagues [23]. A laser propagating against an atomic beam can slow it down to v = 0 due
to radiation pressure. To maintain a strong force during all the deceleration time, the
resonance condition should be maintained. A inhomogeneous magnetic field is tailored to
compensate for the reduction of the Doppler shift with the velocity.

Consider atoms propagating along the z axis with initial velocity v0. Clearly, we
must chose kL · v < 0 to slow down the atoms. With a counter-propagating beam,
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Figure 2: Principle of a Zeeman slower. Top: scheme of the experimental setup. Bottom:
typical shape of the bias magnetic field as a function of z. Figure from Ref. [11].

kL · v = −kLv. Writing δ′ = 0 gives B(v) = ~kLv/(gµB). If the acceleration is constant
a = amax = Γvrec/2, the velocity depends on z as v(z) =

√
v2

0 − 2az. The magnetic field
should then be designed to vary with z like

B(z) = B0

√
1− 2az

v2
0

= B0

√
1− Γvrec

v2
0

z where B0 =
~kLv0

gµB
.

2.3.2 Dipole force

The second term appearing in the expression of the force (19) is

Fdip = −~δ s(r)

1 + s(r)

∇Ω1

Ω1(r)
= −~δ

2

∇s(r)

1 + s(r)
. (23)

This force is equal to zero on resonance (δ = 0) and is also zero in the case of a plane
wave, for which Ω1 or s does not depend on position. From its expression, it is clear that
it derives from the following dipole potential :

Udip(r) =
~δ
2

ln(1 + s(r)) . (24)

Hence, the dipole force is a conservative force. Its value is zero at resonance. In the
case where |δ| � Γ,Ω1, the saturation parameter s is very small and one can expand the
logarithm. As a result, the dipole potential becomes proportional to the local intensity:

Udip(r) =
~δ
2
s(r) =

~Ω2
1(r)

4δ
= ~Γ

Γ

δ

I(r)

8Is
for |δ| � Γ,Ω1 . (25)

The dependence of the force on the detuning has a dispersive shape, as it is related to
the real part of the atomic polarizability. In particular, the force — and the potential —
is opposite for opposite detunings. It expels the atoms from a high intensity region when
δ > 0, whereas it attracts the atoms to high intensity regions for δ < 0.
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δ in units of Γ

Figure 3: Dependence of the dipole force Fdip (arbitrary units) on the detuning, as a
function of δ/Γ, for I = Is.

For large values of the detuning δ, the force decreases as 1/δ. Recalling that the
radiation pressure decreases like 1/δ2, for large values of δ the dipole force dominates over
the radiation pressure:

Fdip

Fpr
' |δ|

Γ

1

kL`
,

where ` is the typical scale for the variation of intensity in space. kL` varies from a few
units to 10−4 typically depending on the intensity profile (from an evanescent wave to a
focused beam), such that Fdip dominates for far off-resonant beams detuned by more than
104Γ, that is a few tens of GHz. In this case, the dipole potential can be used to realise
conservative traps.

Example of conservative dipole potentials Far off-resonant lasers are used to tailor
conservative dipole potentials. As δ must be large to avoid photon scattering, the laser
intensity should also be large to obtain a significant value of Udip as compared to the
temperature, or to the external energy.

Blue detuned potentials, that is with δ > 0, repel the atoms from high intensity regions.
They can be used for realising an atomic mirror, with an evanescent field at the surface
of a dielectric material [24,25]. It has been shown [26] that the atoms can bounce several
times above such a mirror when it is orientated upwards, provided the mirror surface is
curved to stabilise the trajectories, see Fig. 4, left. Another example is the guiding of
atoms in the centre of blue detuned hollow laser beams. Using a combination of a hollow
beam and two sheets of light, a three-dimensional box has recently been realised to confine
a Bose-Einstein condensate [27].

With red-detuned light, one can realise conservative atom traps. At the focus point
of a laser beam, the intensity is maximum and the dipole potential is minimum. In this
way, Steven Chu and his colleagues demonstrated the first dipole trap in 1986 [28]. To
increase the oscillation frequency in the direction of the beam, two laser can be used, and
a crossed dipole trap is obtained [29], see Fig 4, right.

Finally, optical lattices where atoms are placed in a periodic light potential are obtained
by interfering several light beams in a standing wave configuration. In this way, atoms play
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Figure 4: Left: Atoms bouncing off a blue detuned evanescent wave. Courtesy of Jean
Dalibard. Right: A conservative trap is realised by crossing two, far off resonant, red
detuned laser beams. The trap is loaded from a magneto-optical trap. Caesium atoms
that were not initially at the crossing fall due to gravity, preferentially along the axes of
the laser beams.

the role of electrons in the periodic potential of a crystal in condensed matter physics. The
physics of atoms in optical lattices is very rich, both in near resonant lattices [30,31] and
in far detuned lattices [32], and the analogy with condensed matter has led to important
results, like the observation of the Mott insulator state [33], which paved the way for the
study of many-body physics with quantum gases [34].
N.B.: The calculation of light shifts is not straightforward in the case of a multi-level
atom. Maxim Olshanii made a short but useful document with this calculation in the case
of the D lines of alkali [35].

3 The dressed state picture

Another path may be taken to derive the dipole force [14, 20]. In a first step, we will
neglect the effect of spontaneous emission. The laser field can be described by a quantum
field, with creation and annihilation operators â†L and âL of photons in the mode of the

laser, and a Hamiltonian ĤL = (â†LâL + 1/2) ~ωL. The idea is now to describe together
the internal atomic state and the state of the light field, and to diagonalize the total
Hamiltonian ĤL + ĤA + V̂AL in a coupled basis. The resulting eigenstates are called the
dressed states, the atomic states being dressed by the photons.

3.1 System under consideration

The external variables r and p are again considered classical. The atomic internal states
are |e〉 and |g〉, and the eigenstates of the Hamiltonian ĤL for the light field alone are
the photon number states |n〉. The number states are eigenstates of the number operator

n̂ = â†LâL, such that n̂|n〉 = n|n〉. This corresponds to the photon number in a given
volume V , and must be understood as 〈n〉 → ∞, V →∞, 〈n〉/V being related directly to
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the laser intensity. Then, the fluctuations ∆n ∼
√
〈n〉 � 〈n〉 are small.

The uncoupled atomic + field states are denoted as |e, n〉 and |g, n〉. They are eigen-
states of ĤL + ĤA with energies

Ee,n =

(
n+

1

2

)
~ωL + ~ω0 Eg,n =

(
n+

1

2

)
~ωL.

For near resonant light, such that |δ| � ω0, ωL, the unperturbed eigenstates are organised
in manifolds of two eigenstates Mn = {|e, n〉, |g, n− 1〉} with energies separated by only
~|δ| around En = n~ωL + 1

2~ω0, see Fig. 5. Each manifold Mn is separated from the next
one Mn+1 by a large energy ~ωL:

Ee,n−1 = n~ωL +
1

2
~ω0 +

1

2
~(ω0 − ~ωL) = En −

~δ
2

Eg,n = n~ωL +
1

2
~ω0 +

1

2
~(ωL − ~ω0) = En +

~δ
2
.

(26)

uncoupled states for: δ > 0 δ < 0

Figure 5: The unperturbed atom + field states can be grouped into manifolds of two states
with a small energy difference ~δ compared to the energy spacing between manifolds ~ωL.
Depending on the sign of δ, either the state connected to |g〉 or to |e〉 has a larger energy.
On resonance (δ = 0), the two states are degenerate. The Mn manifold with mean energy
En and δ > 0 is enlightened.

3.2 Eigenstates for the coupled system: the dressed states

Let us now add the coupling V̂AL = ~Ω0(r)
2

(
âL|e〉〈g|+ â†L|g〉〈e|

)
, in the rotating wave

approximation, where non resonant terms âL|g〉〈e| and â†L|e〉〈g| have been neglected. It
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acts inside a given manifold Mn, but doesn’t couple different manifolds together. Ω0(r) is
the Rabi frequency for the 1 photon coupling in the manifold M1 between |g, 1〉 and |e, 0〉.
The matrix element between |g, n〉 and |e, n− 1〉 in manifold Mn is:

〈g, n|V̂AL|e, n− 1〉 = 〈e, n− 1|V̂AL|g, n〉 =
~Ω0(r)

2

√
n (27)

As the laser mode is populated by a very large amount of photons with mean number 〈n〉
and a very small dispersion ∆n, the matrix element in manifold Mn and Mn+1 are almost
the same. We thus define the mean Rabi frequency as Ω1(r) =

√
〈n〉Ω0(r) and write

〈g, n|V̂AL|e, n− 1〉 = 〈e, n− 1|V̂AL|g, n〉 '
~Ω1(r)

2
. (28)

The Hamiltonian inside the manifold Mn then reads:

Ĥn = En +
~
2

(
−δ Ω1

Ω1 δ

)
. (29)

Its eigenstates |±, n〉 are superpositions of |e, n〉 and |g, n−1〉, where atom and field cannot
be separated any more, as if the atom were dressed by the light. This is the reason why
they are called the dressed states. The eigenenergies read

E± = En ±
~
2

√
δ2 + Ω2

1 = En ±
~
2

Ω, (30)

where Ω =
√

Ω2
1 + δ2 is the generalised Rabi frequency. Due to the interaction, the states

repel each other are are now separated by ~Ω ≥ ~|δ|. In particular, the degeneracy is
lifted on resonance, the two dressed states being separated by ~Ω1.

In the case |δ| � Ω1 discussed in the previous section, the eigenstates are very close to
the unperturbed states. |g, n〉 is close to |+〉 for δ > 0 and to |−〉 if δ < 0. The expression
of the energy simplifies and we recover the light shift ~Ω2

1/4δ:

Eg,n ' Esgn(δ) ' En ±
~|δ|
2
± ~Ω2

1

4|δ|
= En +

~δ
2

+
~Ω2

1

4δ
= (n+

1

2
)~ωL +

~Ω2
1

4δ
.

The dressed levels are decomposed on the unperturbed basis as follows:

|+, n〉 = sin
θ

2
|g, n〉+ cos

θ

2
|e, n− 1〉 (31)

|−, n〉 = − cos
θ

2
|g, n〉+ sin

θ

2
|e, n− 1〉 (32)

where the dressing angle θ(r) is defined by

cos θ(r) = − δ

Ω(r)
, sin θ(r) =

Ω1(r)

Ω(r)
.

With this notation, the energy of state |±, n〉 is simply ±~Ω(r)/2. θ = 0 corresponds to
large and negative detuning, where |+, n〉 ' |e, n− 1〉, θ = π corresponds to the opposite
case of large and positive detuning where |+, n〉 ' |g, n〉 and θ = π/2 to the resonance
δ = 0 where |+, n〉 has equal weight on the two unperturbed states.
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Figure 6: Energy, in units of ~Ω1, of the dressed states (red) and of the unperturbed states
(black), as a function of the detuning δ (in units of Ω1). At resonance, the level spacing
is ~Ω1. Far from resonance, the dressed levels essentially coincide with the unperturbed
levels.

3.3 Spontaneous emission

The new eigenstates |±, n〉, as linear superpositions of states |g, n〉 and |e, n− 1〉, have in
fact a finite lifetime, due to the coupling of the excited state |e〉 with the empty modes of
the quantum field. As a consequence, transitions between states of the multiplicity Mn to
states of the multiplicity Mn−1 can occur: a photon of the laser mode is scattered into an
empty mode of the quantum field. The emitted frequency can be ωL, ωL + Ω or ωL − Ω
depending on the initial and final states.

Let us estimate the reduced dipole element ds′s between the initial state |s, n〉 and the
final state |s′, n− 1〉, where s, s′ = ±.

ds′s = 〈s′, n− 1| (|e〉〈g|+ |g〉〈e|) |s, n〉

Here, |e〉〈g| stands in facts for |e〉〈g| ⊗ 1, meaning that the laser photon states remains
unchanged. The dipole operator acts on |e〉 or |g〉, but not on |n〉. It can then only couple
states |e, n− 1〉 (from |s, n〉) and |g, n− 1〉 (from |s′, n− 1〉), which have the same photon
number. As a consequence, only the second term |g〉〈e| contributes and we have:

ds′s = 〈s′, n− 1|g〉〈e|s, n〉 =⇒


d++ = d−− = − cos

θ

2
sin

θ

2
d+− = sin2(θ/2)

d−+ = cos2(θ/2).

The transition rate from |s, n〉 to |s′, n− 1〉 is proportional to the square dipole d2
s′s. For

θ = 0, the linewidth must be equal to Γ for the transition + → −, corresponding in fact
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to the e→ g transition. The linewidth are thus

Γ++ = Γ−− = cos2 θ
2 sin2 θ

2 Γ

Γ+− = sin4 θ
2 Γ

Γ−+ = cos4 θ
2 Γ.

N.B. The total decay rate from state |+, n〉 is Γ+ = Γ++ + Γ−+ = cos2 θ
2 Γ, proportional

to the weight of state |+, n〉 on the excited state |e, n− 1〉.

3.4 Dipole force

If the Rabi frequency Ω1 depends on the position of the atom, both the eigenenergies and
the decomposition of the eigenstates on the uncoupled states vary with r. The instant
force acting on the atom is F+ = −∇E+ = −~∇Ω/2 = −~

[
∇Ω2

]
/4Ω = − ~

4Ω

[
∇Ω2

1

]
if

the system is in state |+, n〉, or F− = −F+ in state |−, n〉. As the number of photons in
the laser field is very large, we neglect the small difference in the coupling for different
values of n and consider that the force F+ is the same for all |+, n〉 states.

If spontaneous emission is not negligible, the system jumps from one type of state, say
|+〉, to the other |−〉. To deduce the resulting force, we must evaluate the total population
π+ in all the |+, n〉 states:

π± = Σn〈±, n|ρ̂|±, n〉

where ρ̂ is the density matrix of the system. The steady state populations π± in states
|±〉 are position dependent, and the mean force is

F = π+F+ + π−F− = (π+ − π−)F+ = −(π+ − π−)
~

4Ω
∇Ω2

1 ∝ −(π+ − π−)∇Ω2
1. (33)

As we will see below, this is nothing but the dipole force discussed at paragraph 2.3.2.
From this simplified expression, we can already identify three cases:

1. if δ > 0, the state |+〉 has a larger component on |g, n〉, and is thus more populated.
π+ > π− and the force expels the atom from the high intensity regions.

2. δ < 0: in this case, π+ < π− and the force attracts the atom to the high intensity
regions.

3. δ = 0: both dressed states have the same weight on |e〉 and |g〉. π+ = π− and the
mean force is zero.

The full calculation of the populations π± allows to recover the expression (23) of the
dipole force [36]. The steady state population can be deduced from rate equations:

dπ+

dt
= −Γ−+π+ + Γ+−π−

dπ−
dt

= −Γ+−π− + Γ−+π+.
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The solution is

π+ =
Γ+−

Γ+− + Γ−+
=

sin4 θ
2

sin4 θ
2 + cos4 θ

2

π− =
Γ−+

Γ+− + Γ−+
=

cos4 θ
2

sin4 θ
2 + cos4 θ

2

and for the population difference:

π+ − π− =
sin4 θ

2 − cos4 θ
2

sin4 θ
2 + cos4 θ

2

=
sin2 θ

2 − cos2 θ
2

1− 2 sin2 θ
2 cos2 θ

2

=
− cos θ

1− 1
2 sin2 θ

=
δΩ

Ω2 − Ω2
1

2

,

π+ − π− =
δΩ

δ2 +
Ω2

1
2

. (34)

The force is deduced from Eq. (33) and (34):

F = − δΩ

δ2 +
Ω2

1
2

~
4Ω

∇Ω2
1 = −~δ

2

∇Ω2
1/2

δ2 +
Ω2

1
2

,

F = −∇
[
~δ
2

ln

(
1 +

Ω2
1

2δ2

)]
= −∇Udip. (35)

We recover the expression of the dipolar force −∇Udip of Eq. (23) and (24) in the limit
|δ| � Γ/2 where s ' Ω2

1/2δ
2.

Appendix

3.5 Rotating wave approximation

Let us come back to the rotating wave approximation and give explicitely the value of
V̂ res
AL and V̂ non res

AL in the interaction picture. We will stick to the case where the broad
band condition is fulfilled, such that we apply the semi-classical approximation. External
variables then become c-numbers, and we concentrate on the internal dynamics only. The
hamiltonian reads:

Ĥ = Ĥ0 +
~Ω1

2

(
|e〉〈g| e−iωLt + |g〉〈e| eiωLt

)
+

~Ω2

2
|e〉〈g| eiωLt +

~Ω∗2
2
|g〉〈e| e−iωLt.

Here, Ĥ0 = ~ω0|e〉〈e|. The first coupling term is the resonant term, the other one is the
non resonant term. We have introduced a complex amplitude Ω2 = − (d · ε∗) E∗L for this
term in a similar way than we defined the Rabi frequency at Eq.(9). We now remark that
Ĥ0 is the hamiltonian of a 1/2-spin:

Ĥ0 =
1

2
~ω0Î +

1

2
~ω0σ̂z

where Î is the identity matrix and σ̂z is the z Pauli matrix. These matrices are the
generators of the rotations. We recall:

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
.
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In the same spirit, we can write the coupling term with Pauli matrices:
V̂ res
AL =

~Ω1

2

(
|e〉〈g| e−iωLt + |g〉〈e| eiωLt

)
=

~Ω1

4

(
σ̂+ e

−iωLt + σ̂− e
iωLt
)

V̂ non res
AL =

~Ω2

2
|e〉〈g| eiωLt +

~Ω∗2
2
|g〉〈e| e−iωLt =

~Ω2

4
σ̂+ e

iωLt +
~Ω∗2

4
σ̂− e

−iωLt

where σ̂± = σ̂x ± iσ̂y, i.e. σ̂+ = 2|e〉〈g| and σ̂− = 2|g〉〈e|.
The idea now is to remove the part of the internal state oscillating at a frequency close

to the laser frequency ωL. We will thus write the Schrödinger equation in a basis rotating
at frequency ωL around the z axis. The atomic state |ψ′〉 in the new basis is related to
the atomic state |ψ〉 in the old basis through:

|ψ〉 = e−
i
2
ωLtσ̂z |ψ′〉. (36)

Its time derivative reads

i~∂t|ψ〉 =
1

2
~ωL e−

i
2
ωLtσ̂z σ̂z|ψ′〉+ i~ e−

i
2
ωLtσ̂z∂t|ψ′〉 .

Inserting this expression into the time-dependent Schrödinger equation

i~∂t|ψ〉 = Ĥ|ψ〉 = Ĥ0|ψ〉+ V̂ res
AL |ψ〉+ V̂ non res

AL |ψ〉 ,

we get:
1

2
~ωL e−

i
2
ωLtσ̂z σ̂z|ψ′〉+ i~ e−

i
2
ωLtσ̂z∂t|ψ′〉 = Ĥe−

i
2
ωLtσ̂z |ψ′〉.

Multiplying on the left by e
i
2
ωLtσ̂z , we obtain

i~∂t|ψ′〉 =

(
e
i
2
ωLtσ̂zĤe−

i
2
ωLtσ̂z − 1

2
~ωL σ̂z

)
|ψ′〉 = Ĥeff|ψ′〉.

The first term in the effective hamiltonian Ĥeff is the rotated Ĥ with an angle ωLt around
the z axis. Let us explicit the effect of the rotation on the three terms of Ĥ. First, Ĥ0

contains only σ̂z and the indentity. Hence, it commutes with the rotation operator and
we get:

e
i
2
ωLtσ̂zĤ0 e

− i
2
ωLtσ̂z = Ĥ0 =

1

2
~ω0Î +

1

2
~ω0σ̂z.

Then, we use the fact that the Pauli matrices σ̂± transform under the action of the rotation
operator like

e
i
2
ωLtσ̂z σ̂+e

− i
2
ωLtσ̂z = eiωLtσ̂+ ,

e
i
2
ωLtσ̂z σ̂−e

− i
2
ωLtσ̂z = e−iωLtσ̂− .

The transformed resonant and non resonant coupling thus reads:

V̂1 = e
i
2
ωLtσ̂z V̂ res

AL e
− i

2
ωLtσ̂z =

~Ω1

4
(σ̂+ + σ̂−) =

~Ω1

2
σ̂x ,

V̂2(t) = e
i
2
ωLtσ̂z V̂ nonres

AL e−
i
2
ωLtσ̂z =

~Ω2

4
σ̂+ e

2iωLt +
~Ω∗2

4
σ̂− e

−2iωLt .
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The resonant V̂ res
AL term is static in the rotated basis, whereas the non resonant term

evolves at frequency 2ωL. The effective hamiltonian is the sum of a static term plus a
rapidly oscillating term:

Ĥeff =
1

2
~ω0Î−

1

2
~δσ̂z +

~Ω1

2
σ̂x + V̂2(t).

We recognize in the static term the hamiltonian (29) in the dressed state picture. Its
eigenstates are |±〉, with energies

E± =
1

2
~ω0 ±

~
2

√
δ2 + Ω2

1.

The effect of V̂1 is important in the sense that is can significantly mix the states |e〉 and
|g〉, and even inverse their population (see the eigenstate in section 3.2). This is due to the
fact that δ is small as compared to ω0, and can be made comparable with Ω1. If, on the
contrary, we try to apply the RWA by rotating in the opposite direction, it would make
V̂2 static, but we would have a term (2ωL − δ) instead of δ for the term proportional to
σ̂z. In this case, the eigenstate for the static part would be essentially the bare eigenstates
|e〉 and |g〉. The effect of V̂2 is hence negligible, as soon as both δ and Ω1 are very small
as compared to ω0.
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transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature,
415:39, 2002.

[34] I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold gases. Rev.
Mod. Phys., 80:885–964, 2008.

[35] M. Olshanii. Far-off-resonant ac-Stark potential for alkali optical traps. http://

physics.usc.edu/~olshanii/PAPERS/multilevel_stark.ps.

[36] J. Dalibard and C. Cohen-Tannoudji. Dressed-atom approach to atomic motion in
laser light: the dipole force revisited. J. Opt. Soc. Am. B, 2(11):1707–1720, 1985.

21

http://physics.usc.edu/~olshanii/PAPERS/multilevel_stark.ps
http://physics.usc.edu/~olshanii/PAPERS/multilevel_stark.ps

	Atom-light interaction
	A two-level model
	Dipolar interaction
	Laser electric field
	Hamiltonian of the three coupled systems
	Hamiltonian of the isolated atom
	Hamiltonian of the quantum field
	Atom to quantum field coupling
	Atom – laser coupling


	Light forces
	Orders of magnitude. Approximations
	Rotating wave approximation
	Time scales
	Semi-classical approximation

	The mean light force
	Interpretation of the mean force
	Radiation pressure
	Dipole force


	The dressed state picture
	System under consideration
	Eigenstates for the coupled system: the dressed states
	Spontaneous emission
	Dipole force
	Rotating wave approximation


