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Introduction

This manuscript summarize my research works during the past ten years in the Bose-
Einstein condensate (BEC) group at Laboratoire de physique des lasers. I started my
scientific career by a PhD thesis on the development of micro-fabricated surface traps for
cold ions, in the context of quantum computing and quantum communications, supervised
by Luca Guidoni at Laboratoire matériaux et phénomènes quantiques. After my defense
in 2010, I joined the BEC group, led by Hélène Perrin, for a post-doctoral stay, during
which I became familiar with the topic of degenerate Bose gases, both experimentally
and theoretically. Two years later I obtained a position as associate professor in the same
group.

Overall context

My research work belongs to the domain of ultra-cold quantum gases, that was enabled by
the realization of the first Bose-Einstein condensates in 1995 [Anderson et al., 1995; Davis
et al., 1995], an achievement recognized by the 2001 Nobel prize in physics [Cornell and
Wieman, 2002; Ketterle, 2002]. Since these pioneering times, a lot of groups worldwide
managed to reach the BEC threshold with an increasing variety of atoms1, developing
along the way new techniques to trap and cool dilute atomic vapors and enriching the
playground of ultracold atom physics. A few years later, the first degenerate Fermi gas
was achieved [DeMarco and Jin, 1999] opening a new research direction with fermionic
species2.

Ultracold atom experiments are very demanding but enable the implementation of
quantum simulators [Bloch et al., 2012]: by trapping dilute atomic samples in a ultra-
high vacuum environment using optical or magnetic forces and cooling them to quantum
degeneracy enables the study of fundamental phenomena and the implementation of model
Hamiltonian. For example, by tightly confining one or two spatial degree of freedom it
is possible to study low dimensional physics [Görlitz et al., 2001], while optical lattices
allow to mimic the structure of crystals [Bloch et al., 2008], or Feshbach resonances enable
to tune the two-body interactions [Chin et al., 2010]. This lead to the observation of a
Bose-Einstein condensate of molecules [Jochim et al., 2003] and stimulated the study of
atomic mixtures of any flavor (Bose-Bose, Bose-Fermi or Fermi-Fermi).

1by chronological order: Rubidium 6, Sodium 44, Lithium 19, Hydrogen 73, metastable Helium 159,
Potassium 146, Cesium 200, Ytterbium 194, Chromium 86, Strontium 188, Calcium 120, Dysprosium
133, Erbium 4 and Europium 145.

2by chronological order: Potassium 49, Lithium 180; 196, Ytterbium 74, Dysprosium 132, Erbium 3
and Chromium 154.
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Introduction

Among the long list of impressive experiments that use trapped atomic quantum gases
I would like to highlight the quantum gas microscopes [Bakr et al., 2009] that can test
the simple theoretical models proposed to explain phase transitions in solid state devices,
the observation of a supersolid phase in a quantum gas with dipolar interactions [Natale
et al., 2019], the measurement of the equation of state of both Fermi [Nascimbène et al.,
2010] and Bose [Desbuquois et al., 2014] quantum gases or the test of the Kibble-Zurek
mechanism in a superfluid [Corman et al., 2014]. Closer to the topics I will discuss in
this manuscript, several groups have been interested in the dynamical properties of low
dimensional Bose gases, as for example the study of the Quantum Newton’s cradle in one
dimension [Kinoshita et al., 2006; Schemmer et al., 2019], stable breathers [Saint-Jalm
et al., 2019] or the emergence of turbulent metastable states [Gauthier et al., 2019] in
two-dimensions.

My experimental research activity rely on the adiabatic potential technique [Zobay and
Garraway, 2001, 2004] that enables the trapping of ultracold atoms in tunable, smooth,
magnetic potentials. This technique is mastered by a few groups worldwide [Garraway
and Perrin, 2016] and can be used to create shell shaped potentials [Colombe et al., 2004;
Merloti et al., 2013b], realize matter-wave interferometry between two wells [Kim et al.,
2016; Mas et al., 2019; Schumm et al., 2005; Sunami et al., 2022] or a ring geometry [Guo
et al., 2022; Heathcote et al., 2008; de Goër de Herve et al., 2021; Kim et al., 2016]. Its
possibilities can be further enhanced by combining it with time-averaging [Gildemeister
et al., 2010; Lesanovsky and von Klitzing, 2007], to realize ring traps [Gildemeister et al.,
2012] or guided interferometry [Pandey et al., 2019].

The BEC group
The Bose-Einstein condensate group has been contributing to the study of ultracold atoms
for more than 20 years and pioneered in particular the adiabatic potential technique that
enables the trapping of quantum gases in very smooth, highly tunable geometries. It
currently runs two experimental setups: the Rubidium machine is devoted to the study of
two-dimensional superfluid dynamics and the Sodium machine aiming at controlling the
interactions in a one-dimensional system to reach the strongly interacting regime. The
former was originally designed to produce ring shaped traps by combining a shell-shaped
trap and a optical light-sheet potential, while the latter relies on an atom chip trap to
tightly confine the atoms in the vicinity of an embedded micro-wave waveguide.

The group is led by Hélène Perrin, research director at CNRS, who initiated the
Rubidium experiment, and gathers Aurélien Perrin, researcher at CNRS who is the prin-
cipal investigator of the Sodium experiment, Laurent Longchambon, associate professor
in charge of the superfluid ring experiments on the Rubidium machine and Thomas Badr,
research engineer who develops new tools for both experiments. Vincent Lorent, professor,
and Paul-Éric Pottie, research engineer, made decisive early contributions to the Rubid-
ium setup, but have since then moved to other topics. Over the years several interns,
PhD students and post-doctoral researchers have joined the projects, and I detail their
contributions in the following chapters.

When I was hired as associate professor, it was to work on both projects: to finish
the works initiated during my post-doc on the Rubidium experiment and to contribute
to the construction of the Sodium experiment. In particular I took part in the design
of the atom chip embedding a microwave waveguide and I participated in the realization
of the first sodium magneto-optical trap in the group. In parallel I initiated several new
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projects on the Rubidium setup, that I detail in this manuscript and progressively resumed
working full time on this experiment. From 2013 to 2020, the Rubidium setup was used to
investigate the superfluid dynamics in a ring geometry under the supervision of Laurent
Longchambon, and in a two-dimensional harmonic trap, under my supervision. Both
projects were coordinated by Hélène Perrin. Since 2021, I am the principal investigator
on the Rubidium experiment. I made the choice to focus in this manuscript on the projects
and results in which I had a significative contribution.

Main results of this work

• I participated in the construction of a BEC machine that enabled the realization of
the first two-dimensional superfluid trapped in a pure magnetic trap, over which we
have a great control;

• I contributed to the study of superfluid dynamics on a curved surface, evidencing
the Kosterliz-Thouless transition and reaching for the first time the fast rotation
limit;

• I played a part in the study of one-dimensional superfluid rings revealing the role of
solitons in the phase-slip dynamics and evidencing the universal features of shock
wave propagation in integrable systems.

Overview of the manuscript

The first chapter describes the important details of the experiment going from a hot Ru-
bidium vapor down to a quantum gas. I detail the setup, including the vacuum chamber,
the laser sources and the geometry of the coils generating the magnetic traps. I explain
the path we follow to reach Bose-Einstein condensation in a hybrid trap and discuss the
tools we use to manipulate and probe the ultracold atom sample.

The second chapter details the key features of two-dimensional superfluidity, how we
trap the atoms onto a surface using adiabatic potentials and achieve a fine control of the
geometry. I summarize the known properties of the two-dimensional superfluid transition
and introduce a few simple models that I use to simulate the dynamics of a quasi-two-
dimensional Bose gas. I discuss the trap geometry and explain an original method to
analyze the dynamics of a superfluid that reveals its collective modes. I also show how a
fine tuning of the parameters enables a new geometry for atom trapping.

The third chapter presents original properties of superfluid dynamics on a curved
surface, from small oscillations to fast rotations. I report a study of the scissors mode
dynamics, that evidences the coexistence of normal and superfluid phases in the ultracold
atom sample. I then present how we can spin up the gas and finely control its angular
rotation frequency, enabling a study of the melting of a vortex lattice in a quasi-two-
dimensional system, induced by thermal fluctuations. I show that it is also possible to
reach in our experiment a fast rotation regime in which the gas takes the form of a ring,
dynamically sustained by its own angular momentum and resulting in a supersonic flow.

The fourth chapter summarizes several theoretical studies of superfluidity in a one-
dimensional ring atomtronic device. I briefly discuss the context of atomtronics and
introduce specific tools to deal with the one-dimensional limit, taking advantage of the
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integrability of the equations. I then report on several works addressing the topics of
superfluid transport and dissipation, evidencing the role of shock waves and solitons.

Finally I conclude with an overall discussion of the results and perspectives of future
works aiming at probing two-dimensional turbulence. In addition three short appendices
give additional technical details on the adiabatic potentials formalism and the thermody-
namics in a rotating frame.

I made the choice of a thematic presentation of my works, rather than following
chronological order. This may give the impression that I have followed a clear path over
the years, which is somewhat artificial. Nevertheless, having now ten years of experience
I think that writing this habilitation thesis is a good opportunity to tell a coherent story.
I hope that it will be useful for future PhD students or fellow researchers that want an
introduction to these works. In particular I tried to keep the mathematical descriptions
as simple as possible and give further details in the appendices. I also tried to use a
common set of notations throughout the manuscript, therefore some of the formulas may
not be written exactly in the same form as in the publications. As it is almost impossible
to keep track of all research works currently happening in the quantum gas community I
indicated in each chapter recent reviews covering the relevant topics.
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The next list describes several symbols that will be later used within the body of the
document. I have tried to use a coherent set of notations throughout the manuscript. I
made the choice to write all quantities and equations using physical dimensions.

Acronyms

AOM Acousto-optic modulator

BEC Bose-Einstein condensate

GHD Generalized hydrodynamics

GPE Gross-Pitaevskii equation

MOT Magneto-optical trap

PCA Principal component analysis

Physics constants

ℏ = h
2π

reduced Planck constant 1.054 571 82× 10−34 J/rad

µB Bohr magnetron h× 1.399 624 604MHz/G

as low energy s wave scattering length for 87Rb 5.3 nm

g gravitational acceleration 9.81m/s2

gF gyromagnetic factor for the F = 1 groundstate −1/2 (−0.70MHz/G)

kB Bolzmann constant 1.380 650 4× 10−23 J/K

M atomic mass for 87Rb 1.443 160 648× 10−25 kg

Thermodynamical quantities

µ̄ = µ
kBT

reduced chemical potential

Λ =
√

2πℏ2
MkBT

thermal de-Broglie wavelength

µ chemical potential
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2Mµ
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M
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M
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Other symbols
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Chapter 1
Overview of the experiment

The aim of this first chapter is to present the experimental setup that is used by the group
to study low dimensional superfluids. It was built during the PhD thesis of [Liennard,
2011] and upgraded during the following theses. I will summarize the main tools we use
and focus on details that are necessary for the understanding of the following chapters. I
will point out the references where further technical details are given. I assume that the
reader is familiar with the basic physics of magneto-optical traps (MOT) and magnetic
traps for neutral atoms [Ketterle et al., 1999]. I will also comment on the technical choices
we made and discuss the evolutions of the setup in the past ten years.
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Chapter 1. Overview of the experiment

1.1 The ultracold atom machine
This first section introduces the Rubidium BEC machine in use at Laboratoire de physique
des lasers, focusing on the different lasers we use to trap and cool the atoms and on the
coils that generate static and oscillating magnetic fields.

1.1.1 The Rubidium 87 atom

The experiment was designed to cool down Rubidium 87 ensembles. The choice of this
particular atom can be motivated by several factors:

• the cooling transition in the near infrared, see figure 1.1, can be obtained by doubling
a fiber laser in the telecom frequency range, thus obtaining a reasonable amount of
power to operate simultaneously a 2D MOT and a 3D MOT at a moderate cost;

• its level structure is compatible with the use of Nd:YAG laser systems at the fun-
damental and doubled wavelengths to implement far-detuned optical dipole traps;

• its scattering properties in the electronic groundstate F = 1 and F = 2 are very
favorable, all scattering lengths between Zeeman mF sublevels being nearly equal
and positive.

The last property ensures that the mean-field interaction is not changed when the atoms
are transferred into a radio-frequency dressed magnetic potential [Lavoine et al., 2021],
which is crucial for our experiment.

1.1.2 The vacuum chamber

The vacuum chamber is made of three parts: a two-dimensional magneto optical trap
(MOT), bought from SYRTE; an octagonal metal chamber with four CF-40, two CF-16
and two CF-63 viewports; and a rectangular cuboid glass cell. The cell and all viewports
are coated with a anti-reflective coating optimized for wavelengths 780 nm, 532 nm and
1064 nm. As the cell is assembled before coating, only its exterior is coated. This choice
of wavelengths is convenient for Rubidium 87, and for the most commonly available high
power, far detuned laser systems. A partial pressure of Rubidium is created in the 2D
MOT chamber using a small oven heated to about 60 ◦C. We operate the system with a
quite low flux and the Rubidium oven shows no sign of failure after more than ten years
of daily operation.

The chambers are pumped by three ion pumps (2L s−1 for the 2D MOT and 25L s−1

for the others) and separated by two differential pumping tubes. This ensures a very high
quality vacuum in the last chamber. Finally a titanium sublimation pump is attached to
the last chamber and can be activated if needed. We do not use vacuum gauges, but rely
on the current reading on the ion pumps power supplies to monitor the residual pressure.
Usually all pump controllers display a reassuring 0 µA value. The chambers are under
ultra high vacuum conditions since more than ten years, the only serious alert concerning
vacuum happened recently with a small leak on one indium seal on the 2D MOT chamber.
It necessitated the use of a turbomolecular pumping bench to detect it and protect the
first ion pump and was solved by adding a flange to constrain the leaking seal.

The main drawbacks of this design are related to the intermediate metal chamber that
favors Eddy currents when we change rapidly the MOT coils currents. This prevents us

24



1.1. The ultracold atom machine

52S1/2

F = 2

F = 1

52P3/2

F ′ = 0

F ′ = 1

F ′ = 2

F ′ = 3

52P1/2

62P1/2

62P3/2

M
O

T
&

pu
sh

be
am

R
ep

um
pe

r

Se
cu

nd
re

pu
m

pe
r

P
ro

be

Γ
2π

= 6.0666(18)MHz

6.834 682 610 904 29(9)GHz

72.218(4)MHz

156.947(7)MHz

266.650(9)MHz

780.241 209 686(13) nm

7
9
4
.9
7
9
n
m

4
2
1
.6
7
1
n
m

4
2
0
.2
9
8
n
m

D
im

pl
e@

10
64

n
m

P
lu

g/
St

ir
re

r@
53

2
n
m

Figure 1.1: Energy levels of the Rubidium 87 atom (directly accessible from the ground
state), with a focus on the D2 line and the lasers used in the experiment. The D1 and
5S–6P lines are indicated for reference. The numbers are taken from [Steck, 2021].
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Chapter 1. Overview of the experiment

to reach very low temperatures during the optical molasses stage and to implement an
efficient optical pumping scheme to load the atoms in the F = 2 groundstate manifold.
Therefore we work in the F = 1 manifold and capture only about 1/3 of the laser-
cooled atoms in the magnetic trap for the transport stage and, due to the relatively high
temperature we loose a significant part of the cloud on the walls of the differential pumping
tube during the transport to the final glass cell [Liennard, 2011].

1.1.3 The laser system

The whole laser system is mounted on two optical tables and boxed to protect it from
dust, to avoid air flow from the air conditioner and for laser safety.

Master laser The master laser is a external cavity diode laser, locked onto a saturated
absorption signal in a Rubidium vapor cell using a modulation transfer scheme. It pro-
duces two resonant probe beams, injected into two optical fibers that are used to perform
resonant absorption imaging to measure the atomic cloud density profile at the end of the
experimental sequence. The imaging pulses are created with a double-pass acousto-optic
modulator (AOM) and are typically 20 µs long. A small part of the master laser light is
used to lock the cooling laser with a beatnote on a photodiode.

Cooling laser The cooling laser is a telecom fiber laser amplified up to 10W and
frequency doubled in a single pass PPLN crystal, resulting in about 1W of light at
780 nm. Its power is controlled by a single pass AOM and it is split in four beams to
inject the MOT fibers and the push-beam. The 3D MOT is fed by a 2 to 6 fiber cluster
that enables the use of six independent fiber output collimators for the MOT beams. The
second input port of the fiber cluster receives a part of the repumper beam.

Repumper laser The repumper laser is a simple laser diode locked onto a saturated
absorption signal in a Rubidium vapor cell. It is injected in the 3D MOT fiber cluster, in
the two fibers of the 2D MOT and in a additional fiber to repump the atoms during the
imaging sequence from the F = 1 manifold to the F = 2, as the resonant probe beam is
tuned to the F = 2 → F ′ = 3 cycling transition. A small amount of light is used to lock
the off-resonant repumper with a beatnote on a fast photodiode.

Off resonant repumper laser In order to image high-density, in situ, samples we use
a dedicated repumper beam, centered onto the trap position and with a waist of ∼ 1mm.
This is necessary because the intensity of the resonant repumper mentioned in the previous
paragraph is too low at the trap position, and this results in a inhomogeneous repumping
of the atoms. Indeed this beam is centered ∼ 2mm below the trap position and has a
larger waist ∼ 4mm allowing to image clouds after typically 15 to 27ms of time of flight.
To reduce the optical depth seen by the second repumper beam, we use a independent
laser diode detuned to the blue of the F = 1 → F ′ = 2 transition by typically 500MHz,
controlled thanks to a beatnote with the main repumper. This enables the repumping of
a controlled fraction of the atoms, without altering the density profile [De Rossi, 2016].

Far detuned optical dipole traps beams To achieve an efficient evaporative cooling
in a magnetic quadrupole trap it is necessary to use an auxiliary laser beam to reduce
the detrimental impact of Majorana losses. This can be achieved either by using a blue
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detuned optical dipole trap, a plug beam [Davis et al., 1995] or a red detuned optical
dimple trap, a dimple beam [Lin et al., 2009]. For historical reasons we started by using
a plug beam, produced by a 10W@532 nm Millenia laser that was available in the group
[Merloti, 2013] and replaced after some years by a more compact 10W@532 nm laser
from the ALS company [De Rossi, 2016]. We had a bad experience with this model,
especially with failures of the integrated power stabilization scheme. During the downtime
of the ALS laser we managed to use a 5W@532 nm Verdi laser to reach the condensation
threshold.

As green high power lasers are quite expansive I suggested to try the dimple beam strat-
egy and implemented recently a 5W@1064 nm amplified fiber laser system from Keopsys
on the experiment [Rey, 2023]. It turned out to be almost as efficient as the plug beam
scheme to produce a Bose-Einstein condensate in our experiment and enabled a simpler
loading strategy, see section 2.3.2. Both the plug and dimple beams need to be focused
down to waists of about 30 to 70 µm, in the vicinity of the quadrupole trap center, which
is achieved with a single lens of focal length 200mm. To achieve a precise control over
their position we superimpose their path on the horizontal probe beam path using dichroic
mirrors with high transmission at 780 nm and high reflection at 532 nm or 1064 nm and
control the orientation of the input dichroic with piezo-electrical elements.

1.1.4 The magnetic traps

MOT and transport The main originality of our setup consists in the magnetic trans-
port that transfers the atoms from the MOT chamber to the final glass cell: the MOT
coils are mounted on a translation rail that moves the coils on a distance of 28 cm. To
be able to trap the atoms during this transport stage, a large gradient is required. In the
present version of the setup, the current flowing in those coils is increased up to 360A,
which requires an efficient cooling. Therefore the coils are made of hollow copper wire in
which circulates cold water. Two independent current power supply provide the currents
in the two coils. A small imbalance is introduced to maximize the overlap of the cloud po-
sition during the transport with the entrance of the differential pumping tube separating
the 3D MOT chamber and the final glass cell.

The coils and their support were built during the thesis of [Merloti, 2013] in replace-
ment of the first design [Liennard, 2011] that suffered from several problems: insufficient
cooling that limited the maximum current (and gradient), rigid cables that were not easily

27



Chapter 1. Overview of the experiment

handled during the transport stage and large eddy currents due to the water cooling ele-
ments. The new design solved these problem by using hollow copper wires and a conveyor
belt system that guides the cables and water cooling pipes during the translation, at the
cost of an increased current (from 40A to 400A). The horizontal magnetic field gradient
of the transport quadrupole coils is 0.25G/cm/A [Merloti, 2013].

This transport system has been running smoothly for more than 10 years doing be-
tween 100 and 300 round trip per day, at each run of the experiment. We had to replace
once the motor of the translation stage, which can be done in situ without unmounting
the coils. Finally the main disagreements we encountered over the year were several water
leaks on the watercooling system, probably due to the constrains accumulated by the back
and forth movement of the conveyor belt. This was solved by using more flexible water
pipes that are less prone to pull on the connections.

Science quadrupole trap The science quadrupole trap coils are two conical coils made
of hollow copper wire, build and assembled during the thesis of [Liennard, 2011]. They
produce a horizontal gradient of about 1.98G/cm/A and are typically operated with
currents in the range 28 to 110A, provided by a single power supply. A specially designed
high current switch system, based on high power IGBT transistors and Zener diodes
enables a fast switching of the current in the coils (the magnetic field reaches 10% of its
initial value in about 350µs). This is important to release suddenly the atoms held in the
trap and perform time of flight expansions.

Compensation coils The whole vacuum chamber is surrounded by three pairs of meter-
scale square coils used to compensate the Earth magnetic field at the position of the 3D
MOT. The currents in those coils are switched off after the transport stage and a set of
two pairs of rectangular coils (10 by 5 cm) are then used to create a homogeneous magnetic
field component in the y and z directions near the glass cell center. These coils are used
to compensate stray magnetic fields at the final quadrupole trap position, such that the
position of the trap does not move when the gradient changes, or produce homogeneous
magnetic fields during the imaging sequence. The residual magnetic field along the x
direction is very small as it is orthogonal to the Earth magnetic field direction.

radio-frequency coils Finally, a few coils are placed in the vicinity of the glass cell
that we use to apply radio-frequency signals to the atoms to induce controlled spin flip
transitions between the Zeeman states of the F = 1 groundstate manifold: this enables
the possibility of performing rf evaporation, rf spectroscopy and, last but not least, rf
dressing. In particular we use a set of three coils, with mutually orthogonal axis to fully
control the polarization of the rf field.

Figure 1.3 displays a sketch of the quadrupole and dressing coils around the final glass
cell. We expect that the atoms in the dressed trap will be located at a position where
the static quadrupole magnetic field defines a vertical quantization axis and therefore we
want to produce a rf dressing field with arbitrary in plane polarization:

Brf(t) = Brfe
iωrf t

(
cos [Θ] ex + sin [Θ] eiΦey

)
+ c.c. (1.1)

Indeed, a π polarized component along z does not contribute usefully to the dressing
potential, see appendix B for a detailed discussion. As is clear from Figure 1.3, an atom
moving on the isomagnetic surface will experience a position dependent coupling to the
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Figure 1.3: Left: sketch of the arrangement of the three dressing coils C1, C2 and C3

around the glass cell (light blue rectangular cuboid). The dark cone gives the shape
of the bottom quadrupole trap coil, the upper one is not shown. Right: sketch of one
isomagnetic surface of the quadrupole field in a vertical plane, showing the expected
ellipsoidal shape. The blue arrows indicate the local direction of the quadrupole magnetic
field on the surface and the blue disk corresponds to the equilibrium position of the atoms
in the dressed trap.

rf field, due to the change of the local quantization axis imposed by the static quadrupole
field. This has important consequences, as detailed in section 2.4.

To achieve the desired polarization we use a set of three coils C1, C2 and C3 fed with
three independent phase coherent signals generated by a dedicated DDS device. Close to
the center of the trap each dressing coil creates a locally homogeneous field directed along
one of the units vector a, b and c. Because of possible misalignment of the coils, those
vectors are close but not equal to the basis vectors (a, b, c) ≃ (ey,−ex, ez) and the field
is:

Bexp
rf (t) = B1 cos [ωrft]a+B2 cos [ωrft+ φ2] b+B3 cos [ωrft+ φ3] c. (1.2)

A lengthy but straightforward calculation shows that it is possible to map exactly equa-
tion (1.2) onto (1.1), up to a global irrelevant phase, by fine tuning the five parameters
(B1, B2, B3, φ2, φ3).

For example, assuming that the misalignment is small, i.e.

a = cos [θa] ey + sin [θa] (cos [ϕa] ex + sin [ϕa] ez)

b = − cos [θb] ex + sin [θb] (cos [ϕb] ey + sin [ϕb] ez)

c = cos [θc] ez + sin [θc] (cos [ϕc] ex + sin [ϕc] ey),

with θa, θb, θc small angles, the optimal parameters are:

φ2 = π − Φ + (θb cos [ϕb] cot [Θ]− θa cos [ϕa] tan [Θ]) sin [Φ] ,

B1 = Brf (sin [Θ] + θb cos [ϕb] cos [Φ] cos [Θ]) ,

B2 = Brf (cos [Θ]− θa cos [ϕa] cos [Φ] sin [Θ]) ,

eiφ3B3 = Brf

(
e−iΦθb sin [ϕb] cos [Θ]− θa sin [ϕa] sin [Θ]

)
.

These equations show how a small misalignment can be compensated by tuning the DDS
parameters. In the experiment we only need to fine tune these parameters when we realize
a trap with perfect rotational invariance to study fast rotating Bose gases.
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Figure 1.4: Summary of the experimental sequence, with orders of magnitude of the
currents, frequencies and times typically used in the current setup [Rey, 2023]. Slight
variations were used in the older versions of the setup, because other components were
in use (lasers, coils, power supplies, ...), however the time scales, atom numbers and
temperatures were similar.

1.2 The sequence

Each run of the experiment consists in preparing a ultracold sample of a weakly interact-
ing dilute Bose gas containing a few 105 87Rb atoms at a typical temperature of 100 nK,
at equilibrium in a radio-frequency dressed trap. We study then its dynamics by applying
a perturbation, waiting for some evolution time in the trap and performing a measure-
ment. A typical sequence is summarized on figure 1.4: several instruments (lasers, power
supplies, signal generators) need to be operated simultaneously, with an accurate syn-
chronization over relatively long times.

This is achieved by using dedicated electronic cards from National Instruments pro-
viding programmable analog and digital outputs, controlled by a computer program. In
short, a sequence file specifies the values of the different outputs at different times, using a
simple programming language; this file is parsed and converted in a table of values that is

30



1.2. The sequence

stored in memory. A dedicated electronic circuit then reads the numerical values and con-
vert them to voltages on the cards outputs at each cycle of a clock signal. For a long time
we relied on the Manip program, written in Borland C++ by Florian Schreck and slightly
modified to adapt to our needs. It is efficient, simple to use and reliable but suffers from
two main limitations: first it relies heavily on the Borland C++ API and thus compiles
only on Windows Xp systems, which is an issue to ensure the long term support of the
experiment, and second it uses a regular sample clock signal, which requires a value for
all the outputs at each cycle, even when the outputs does not change. As a consequence
the memory requirements are quite large and the resolution of the clock signal is limited
to 100µs.

During the thesis of [Rey, 2023] we upgraded both the hardware and the software of
the experiment control system. We now use the Labscript software suite and a National
Instrument PXI rack system with 64 digital outputs and 32 16-bits analog outputs. The
software is written in python, works on any operating system (Windows, MacOS or Linux)
and use a smart programming model: it stores only the changes of values and uses a
synchronization signal to update the outputs at the desired times. this requires a dedicated
micro-controller board that generate this synchronization clock. This programming model
allows to benefit from the full 400 kHz refresh rate of the analog output cards while being
able to run long sequences (up to 300 s).

1.2.1 MOT loading

To load the MOT, we operate the 2D MOT with about 70mW of cooling beam power
in each of the two beams (at the output of the fibers), red detuned by 3Γ with respect
to the F = 2 → F ′ = 3 cycling transition and a few mW of repumping beam power, at
resonance with the F = 1 → F ′ = 2 transition. The remaining power of the cooling laser
is injected in the 3D MOT fiber cluster: about half the power is put in the vertical beams
and the other half is split among the four horizontal beams. The 3D MOT is operated
with a gradient of 5.5G/cm. The detunings of the beams are the same for both MOTs.
To increase the loading rate of the 3D MOT a few hundreds of µW are used as a push
beam along the tube connecting the two chambers. The typical loading rate of the 3D
MOT is 10 to 20 s, which is quite slow, compared to other setups where it occurs one
order of magnitude faster. The lifetime of the atomic cloud trapped in the 3D MOT is
30 s, limited by background collisions

In order to load the magnetic trap, we use a standard MOT compression scheme,
followed by a molasses stage. We then turn off first the repumper beam to accumulate
atoms in the F = 1 manifold and then the cooling beams, just before increasing the
gradient to its maximum value to capture the cloud in the magnetic trap. What is
lacking in this sequence is an optical pumping stage: we could not implement it because
of large Eddy currents arising when switching the magnetic field from the quadrupole
to a homogeneous field configuration. Therefore we are able to load only about 30% of
the atoms in the magnetic trap. This lack of optical pumping also explains why we use
the F = 1 manifold to produce the BEC: when we tried loading the F = 2 manifold we
always get a significative fraction of atoms in the F = 2,mF = 1 state, which leads to
detrimental losses induced by inelastic collisions during the evaporation stage.
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1.2.2 Magnetic transport

The kinematics of the transport are fully determined by the target distance of about
28 cm and the control of the jerk (third order time derivative of the position) during the
acceleration and deceleration phases. We use a pre-loaded transport sequence with 8
steps of equal time and a jerk of j0 = ±25m/s3, leading to a transport time of ∆T =
8(D/(10|j0|))1/3 ≃ 0.83 s, a maximum acceleration |amax| = |j0|∆T/8 ≃ 2.6m/s2 and
velocity vmax = 2|j0|(∆T/8)2 ≃ 0.54m/s. This results in a relatively fast transport
without any noticeable center of mass excitation at the final position.

The main limitation during the transport is given by the overlap of the transverse size
of the cloud with the 4mm inner diameter of the differential pumping tube: even when we
carefully align the transport axis with the tube direction, we always record losses during
the transport. We attribute these losses to the fact that atoms on the edges of the cloud
are lost when they hit the walls of the chamber. It turns out that these losses also help
cooling the cloud during the transport as, on average, the most energetic atoms are lost.
The horizontal rms size of a thermal cloud held in a quadrupole trap is ∆x ≃ 2kBT/(ℏα).
At the end of the transport the temperature is about 200µK, for a gradient of 90G/cm,
resulting in a size of about 1.3mm, compatible with this explanation. We estimate that
only 40% of the atoms loaded in the magnetic transport trap are transferred to the final
chamber. However this low efficiency does not prevent us to reach condensation.

To minimize these losses, one can think of adiabatically compressing the trap to reduce
the rms size. Indeed the phase space density scales as α3/T 9/2 in a quadrupole trap, and
if the gradient increases from α0 to α1, the rms size should follow the scaling: ∆x1/∆x0 =
(α0/α1)

1/3. This is not very favorable as doubling the gradient only results in a reduction
of about 20% of the rms size. Another possibility would be to reduce the temperature by
evaporative cooling before the transport. In our experiment the elastic collision rate is too
small compared to the typical losses due to background collisions in the MOT chamber
for evaporation to be efficient at this stage.

1.2.3 Evaporation

In the glass cell we transfer the atoms in the final quadrupole trap and increase the gradient
adiabatically to 216G/cm, leading to a higher temperature of 350µK. We then use a radio-
frequency signal fed to a 4 cm, few loops, coil antenna, through a 5W amplifier to induce
splin flips between the Zeeman sublevels of the F=1 manifold and perform evaporation.
We start at a frequency of 65MHz, truncating the trap at a energy of kB × 3mK, much
higher than the initial temperature and then ramp down the frequency to 4MHz. This
results in an efficient evaporation, with a phase-space density scaling as N−3.1, down to
a temperature of about 20 µK, as shown in figure 1.5 [Dubessy et al., 2012b]. However
at this point Majorana losses limit the rf evaporation and one has to use a mitigation
strategy.

In our case we choose to rely on a hybrid quadrupole plus optical dipole beam trap to
reduce Majorana losses. We first tried a blue detuned repulsive plug beam [Dubessy et al.,
2012b], a strategy that was successful for many years, and more recently implemented a
red detuned attractive dimple trap [Rey et al., 2022]. In short we turn on the optical
trap during the evaporation ramp and when Majorana losses become too important we
open the quadrupole trap by decreasing the gradient to 56G/cm. We then resume the
evaporation ramp from 2MHz to 450kHz which gives samples with several 105 atoms at
a temperature of about 250 nK. Both methods allow to reach Bose-Einstein condensation
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Figure 1.5: Evaporation efficiency in a bare
quadrupole trap of gradient b′ = 216G/cm.
a) Temperature and b) phase space den-
sity versus atom number, in log-log scale.
The solid blue lines are power law fit to the
data. Below 107 atoms the evaporation effi-
ciency is lower, because of increased Majo-
rana losses at T ≤ 20 µK. The red symbols
correspond to the temperature and phase
space density after a adiabatic decompres-
sion of the quadrupole trap to b′ = 55G/cm,
this lowers the Majonara losses and gives a
good starting point for the final evaporation
ramp in the hybrid trap.

with similar atom numbers and temperatures.
Finally we transfer the atoms into the adiabatic potential by turning on a strong rf

field while decreasing the optical power. I will discuss in detail the loading protocol and
the properties of the adiabatic potential in section 2.3.2.

1.3 Tools and diagnosis

Once the atoms are loaded in the adiabatic potential the sample is ready and the real
science begins. As we are interested in studying the superfluid response of the cloud, we
developed specific tools to probe and measure its dynamics.

1.3.1 Eight channel DDS

The main tool we developed in the laboratory, thanks to the support of the electronic
workshop and specifically of Fabrice Wiotte, is a phase coherent eight outputs, fast, agile
and fully programmable DDS. It is based on two four outputs DDS devices (AD9959), fed
by a common 10MHz clock and driven by a micro-controller unit (TM4C123). The DDS
clocks are scaled up to 500MHz using internal phase-locked loops. The micro-controller
programs the two DDS using dedicated serial peripheral interfaces and achieves a refresh
rate between 100 kHz and 1MHz, limited by its internal 80MHz clock. The outputs of
the DDS are amplified by wide band instrumentation amplifiers up to a maximum power
of 20 dBm and controlled by a fast rf switch.

Each output delivers a signal of the form A cos [ωrft+ ϕ], where the amplitude A is
programmable with 10 bit resolution, the frequency ωrf with 32 bit and the phase ϕ with
14 bit. To fully reconfigure one of the outputs 14 bytes of data must be sent to the DDS
and the communication bus provides a 56Mbytes data transfer rate, limited by the micro-
controller clock frequency. Using three of the outputs we obtain a fully controllable rf
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field at the center of the quadrupole trap (1.2), that we tune to achieve the desired rf
polarization (1.1). This results [Garraway and Perrin, 2016; Perrin and Garraway, 2017]
in a rf-atom coupling in a quadrupole trap of the form:

Ω(r) =
Ω0√
2

(
1− ρ2 + (x2 − y2) cos [2Θ] + 2xy sin [2Θ] cos [Φ]

2ℓ2
− 2z

ℓ
sin [2Θ] sin [Φ]

)1/2

,

(1.3)
where ℓ2 = ρ2+4z2, ρ2 = x2+y2 and Ω0 is the maximum coupling, achieved for a circular
polarization with Θ = π/4 and Φ = π/2.

Interestingly, equation (1.3) is isotropic in the (x, y) plane, except for the term (x2 −
y2) cos [2Θ] + 2xy sin [2Θ] cos [Φ], that can be written as −2

√
η(1− η)(x′2 − y′2), where

η =
1 + sin [2Θ] sin [Φ]

2
(1.4)

quantifies the fraction of the rf field that contributes to the coupling and the rotated
frame is defined by

x′ = cos [ϕ′]x+ sin [ϕ′] y,

y′ = sin [ϕ′]x− cos [ϕ′] y,

where the angle of the rotated frame is:

tan [ϕ′] =
cos [Φ] sin [2Θ]

cos [2Θ]−
√

1− sin [2Θ]2 sin [Φ]2
. (1.5)

Finally the coupling can be written as:

Ω(r) =
Ω0√
2

(
1−

ρ2 − 2
√
η(1− η)(x′2 − y′2)

2ℓ2
− 2z

ℓ
(2η − 1)

)1/2

. (1.6)

Equation (1.6) is very helpful to adjust the adiabatic potential properties: it becomes
perfectly isotropic in the (x, y) plane for a pure circular polarization η = 1, which corre-
sponds also to the maximum coupling, it is maximally anisotropic for a linear polarization
η = 1/2, and to achieve a specific configuration, corresponding to a given couple (η, ϕ′),
the DDS parameters can be found by inverting equations (1.4) and (1.5):

Θ =
1

2
arccos

[
2
√
η(1− η) cos [2ϕ′]

]
,

Φ = arccos

[
2
√
η(1− η)

sin [2ϕ′]

sin [2Θ]

]
.

In particular it means that the trap axis can be rotated while keeping constant the oscil-
lation frequencies.

The eight channel DDS was implemented during the thesis of [de Goër de Herve, 2018]
and its integration in the computer controlled sequence was improved recently [Rey, 2023].
In prior works we used a simpler version with only two independent channels fed to the
C1 and C2 coils, which did not allow a full control of the polarization.
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1.3.2 Imaging

To probe the atomic cloud we use absorption imaging, along two axes: a probe beam
propagating along the y axis, imaged with two lenses onto a camera (Andor - iXon)
achieving a magnification of Gh = 2.17 and a probe beam propagating along the z axis,
images with four lenses onto a camera (Andor - Luca) and a magnification of Gv = 7.8.

The horizontal imaging system is primarily intended to measure the density distribu-
tion after a time-of-flight expansion to extract the atom number, the condensed fraction
and the temperature. The circularly polarized probe beam, with waist 2.7mm, is there-
fore aligned below the trap position, with a 2.5mm offset, such that the cloud is properly
imaged with time-of-flights in the range 10 to 30ms. During the imaging pulse we use a
small homogeneous 1.9G magnetic field along y to define the quantization axis and we
tune the probe frequency to the F = 2,mF = 2 → F ′ = 3,mF ′ = 3 cycling transition.
We use a 17 µs long pulse to avoid blurring by atomic motion during the interrogation
time. Just before the probe pulse we send a resonant 100µs repumper pulse tuned to the
F = 1 → F ′ = 2 transition to repump the atoms in the F = 2 manifold.

The vertical imaging system is intended to measure the density distribution either in
situ or after a time of flight: the whole camera-objective system is mounted onto a 3-axis
translation stage to position the object plane at the desired position. Due to the moving
transport coils, the first lens of the objective is always 10 cm away the atoms, resulting
in a low numerical aperture NA∼ 0.1, which limits the optical resolution to 4 µm and
ensures a deep of field of 100µm. For in situ imaging, the sample is quite dense and to
avoid problems with the repumper pulse, we use a dedicated beam, propagating along x,
with a higher intensity and detuned by 500MHz from the F = 1 → F ′ = 2 transition.
It allows to repump uniformly a controllable fraction of the cloud without altering the
density profile. The probe beam is circularly polarized, with a waist of 0.7mm, and lasts
for 20 µs.

For both imaging systems we adjust the peak intensity of the probe to exploit the full
dynamic range of the camera. To take into account the inhomogeneous density profile
of the probe beams, we calibrated the efficiency of each cameras in terms of photons per
count, and deduce the density profile from [Reinaudi et al., 2007]:

σ0n(x, y) = −c∗ ln
[
It(x, y)− Id(x, y)

Ir(x, y)− Id(x, y)

]
+
It(x, y)− Ir(x, y)

Isat
, (1.7)

where n(x, y) is the atomic density profile integrated along the line of sight, σ0 is the reso-
nant absorption cross-section, c∗ is a dimensionless parameter that can be self-consistently
calibrated, It(x, y) is the transmitted intensity profile, Ir(x, y) is the reference intensity
profile, Id(x, y) is the stray background light and Isat is the saturation intensity of the
cycling transition. A detailed discussion of this implementation in our setup is given in
[De Rossi et al., 2016]. To evaluate equation (1.7) we record the three pictures in a row.
To obtain an accurate reference intensity profile we use a fringe removal algorithm using a
bank of 50 reference images continuously updated at each run of the experiment [Ockeloen
et al., 2010].

1.3.3 Additional beams

Even though we rely heavily on the DDS to control and dynamically change the trap
properties, we cannot achieve arbitrary potentials and specifically induce a local per-
turbation on a small fraction of the cloud. This is for example needed if one wants to
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put an obstacle on top of the trapping potential, to study the dissipation of a flow. To
achieve this, Thomas Badr developed a laser stirrer, based on a repulsive optical beam
(few mW at 532 nm), tightly focused to a waist of about 10 µm and controlled by two
crossed AOMs, fed by a dedicated 2 channel DDS device. It is mixed with the path of the
vertical probe beam using a 2 inches dichroic mirror and allows to add a controllable ob-
stacle in the (x, y) plane. It has been used for example in the theses of [de Goër de Herve,
2018] and [Guo, 2021] to induce rotation in a ring-shaped Bose-Einstein condensate, as
an alternative approach to the method I present in section 3.2.1.

As mentioned in the introduction, the setup can also produce ring traps by combining
the adiabatic potential with a horizontal light sheet dipole trap, as proposed in [Morizot
et al., 2006] and realized in [Heathcote et al., 2008; de Goër de Herve et al., 2021]. This
is achieved by using a 0 − π phase plate in the path of an elongated Gaussian beam, to
create an intensity profile with a node, tightly confining the atoms in the horizontal plane.
For this beam we use the 5W Verdi laser and the optical bench was developed during the
theses of [De Rossi, 2016; de Goër de Herve, 2018] and [Guo, 2021] under the supervision
of Laurent Longchambon. I contributed to this project mainly by studying theoretical
proposals and performing numerical simulations, detailed in chapter 4.

Finally we investigated the possibility of adding arbitrary potentials by imaging a
specific light pattern onto the atoms. Thomas Badr and Avinash Kumar, post-doc in
the group at that time, tested on a separate bench both a spatial light modulator and
a digital micro-mirrors device, by imaging the pattern onto a CCD camera. They used
an optimization algorithm with a feedback loop to achieve the desired patterns. This
possibility has not been implemented onto the experiment yet, but will certainly be in
the future.

Conclusion
In this chapter I described the setup we use to study weakly interacting Bose gases in quasi
two-dimensional geometries, as reported in the following chapters. It routinely produces
ultracold atom samples of typically a few 105 atoms at a temperature below 200 nK, in
approximately 30 s. The setup relies on a three chamber design, with a magnetic transport
stage based on moving coils, which enables a very high quality vacuum in the final glass
cell resulting in a typical lifetime above 120 s in the dressed trap. As I explained this
complex chamber design prevents us to perform efficient optical pumping at the end
of the MOT, resulting in a small overall transfer efficiency, from the MOT to the final
magnetic trap. I think that this does not hinder the performances of the setup, although
a better collection efficiency would allow to reduce the experiment cycling time. However,
as I will show in chapter 3, the experiment cycle time may also be limited by other factors.
Therefore, instead of trying to reduce the cycle time, we are thinking of trying to get as
many information as possible from a single experiment.

I suggested that we try to apply a non destructive imaging scheme to measure the in
situ density profile of our samples. The idea is to use a probe beam far detuned from the
imaging transition, typically a few hundreds of MHz, such that the atomic sample behaves
as a phase object: the information is then encoded in the diffraction pattern of the probe
beam. One way to recover the atomic sample density profile is to measure this diffraction
pattern after a short propagation distance and use a reconstruction algorithm to infer the
shape of the diffracting phase object [Wigley et al., 2016]. As the absorption remains low,
thanks to the large detuning, this process can be repeated to take several pictures of the
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density profile. This would be extremely useful to study the dynamics of a ultracold Bose
gas, as a movie of the in situ dynamics could be recorded before releasing the atoms and
taking a last time-of-flight picture to calibrate the atom number and temperature. We
estimate that it should be possible to take at least 10 pictures in a row while preserving a
reasonable signal to noise ratio. This improvement will by implemented during the PhD
of Rishabh Sharma that I co-supervise with Hélène Perrin.

In order to have more flexibility in the choice of laser detunings for the different beams,
and in particular to perform non-resonant imaging, we are upgrading our 780 nm laser
chain by locking all the lasers to a master laser using beatnotes. This will enable new
opportunities and we think that it will also improve the stability of the experiment. Finally
we are considering adding a microwave antenna, tuned to the 87Rb hyperfine transition
at ∼ 6.8GHz to transfer the atoms from the F = 1 to the F = 2 manifold in the final
trap [Barker et al., 2020; Bentine et al., 2020, 2017].
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Chapter 2
Two-dimensional superfluids

This chapter aims at introducing the key properties of superfluidity in two-dimensional
systems, namely the existence of a critical phase-space density above which the superfluid
transition occurs, and its observation with trapped weakly interacting ultracold atomic
Bose gases held in highly oblate traps. I discuss the different models that we use to
interpret the experiments and show how we reach the quasi two-dimensional limit in our
experiment using a adiabatic potential in which the atoms are naturally trapped onto a
surface. Finally I discuss how the curvature of the shell trap surface can be used to realize
new two-dimensional trapping geometries.
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Chapter 2. Two-dimensional superfluids

2.1 Context: ultra-cold atoms in flatland
I present in this section the main tools that are now used by many groups to characterize
quasi two-dimensional ultracold atomic samples, since the pioneering work of [Esslinger
and Blatter, 2006; Hadzibabic et al., 2006]. A comprehensive review of this topic can be
found in [Hadzibabic and Dalibard, 2013].

2.1.1 The Kosterlitz-Thouless transition

As is well known, the homogeneous ideal Bose gas in three dimensions undergoes a
Bose-Einstein condensate (BEC) phase transition when the phase space density D = nΛ3

exceeds a critical value: Dc = ζ(3/2) ≃ 2.61, in the thermodynamic limit where N and
L → ∞ at constant density n = N/L3. For a weakly interacting Bose gas the transition
still occurs, and because of the interactions the BEC is superfluid. In two dimensions the
situation is very different: there is no BEC phase transition for the homogeneous ideal
gas, while a weakly interacting Bose gas undergoes a Kosterlitz-Thouless transition to a
superfluid phase, with a universal jump of the two-dimensional superfluid phase space
density at the transition from 0 to 4. The absence of Bose-Einstein condensation can be
understood by the increased role of thermal fluctuations in low dimensional systems that
generically prevents phase coherence at large distances [Hohenberg, 1967; Mermin and
Wagner, 1966].

A landmark experiment, using a thin film of Helium-4 adsorbed on a surface, allowed
to test quantitatively the predictions of the Kosterliz-Thouless theory and confirmed the
jump of the superfluid density at the transition [Bishop and Reppy, 1978]. Interestingly
this was measured as a shift of the resonance frequency of a torque oscillator attached to
the surface: indeed superfluidity manifests only in the dynamical properties of the fluid.
Other diagnosis include the measurement of first and second sounds in a superfluid [Gałka
et al., 2021] or the direct evidence for the existence of a critical velocity [Desbuquois et al.,
2012].

Estimation of the critical point In the vicinity of the two-dimensional superfluid
transition, the equation of state of an homogeneous weakly interacting Bose gas was
computed using quantum Monte-Carlo methods, resulting in an estimation of the critical
phase-space density and reduced chemical potential [Prokof’ev et al., 2001]:

Dc = ln

[
380± 2

g̃

]
and µ̄c =

g̃

π
ln

[
13.2± 0.4

g̃

]
, (2.1)

where g̃ is the dimensionless two-body interaction strength. Importantly, the equation
of state can be written in the universal form [Prokof’ev and Svistunov, 2002]: D =
Dc + F ((µ̄− µ̄c)/g̃), where F (x) is a universal function, and µ̄ = µ/(kBT ) is the ratio of
the chemical potential to the temperature. Close to the superfluid transition the gas is
also characterized by reduced density fluctuations that can be attributed to the existence
of a non negligible quasi-condensate fraction.

Figure 2.1 shows the equation of state of the two-dimensional superfluid transition for
g̃ = 0.1, compared to simple analytical models. The fluctuating region where mean-field
predictions are inaccurate is roughly of size |X| ≤ 1, where X = (µ̄ − µ̄c)/g̃ vanishes
at the critical point. For X large and negative the ideal Bose gas equation of state
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2.1. Context: ultra-cold atoms in flatland

Figure 2.1: Equation of state of the ho-
mogeneous Kosterlitz-Thouless transition,
for g̃ = 0.1 (blue symbols), as a function
of X = (µ̄ − µ̄c)/g̃ and compared to var-
ious analytical approximations: the ideal
Bose gas (dashed red curve), the Hartree-
Fock semi-classical model (magenta dash-
dotted curve), the Thomas-Fermi limit
(blue dashed curve) and the Bogoliubov
prediction (green dash-dotted curve). The
grey shaded area indicates the superfluid
phase space density.

Dideal = − ln [1− exp [µ̄]] is relevant, up to X ∼ −3, but diverges as expected for µ̄ →
0−. A better approximation is provided by the Hartee-Fock mean-field model DHF =
− ln

[
1− eµ̄−g̃DHF /π

]
that is accurate up to X ∼ −1, but cannot capture the fluctuating

region. For X large and positive the Thomas-Fermi model DTF = 2πµ̄/g̃ is accurate from
X ∼ 1. In this regime a better approximation is obtained by accounting for the Bogoliubov
excitations [Prokof’ev and Svistunov, 2002], which results in the implicit model DB =
2πµ̄/g̃ + ln [2g̃DB/π − 2µ̄], accurate for X > 0.

2.1.2 Ultracold atoms in quasi two dimensions

In most experiments dealing with dilute ultracold atomic ensembles in two dimensions,
the atoms are held in a trapping potential, resulting in a inhomogeneous density profile.
Thanks to the local density approximation it is possible to map an inhomogeneous system
to a homogeneous one, upon using a local chemical potential µloc(r) = µ − V (r), where
µ is now the chemical potential corresponding to the peak density. In such a system
it is then natural to formulate the equation of state in terms of the total atom number
N(µ, T ), where

N = Λ−2

∫
drD

(
µ− V (r)

kBT

)
. (2.2)

The superfluid transition can then be defined when the peak phase space density,
at the trap center, exceeds the critical value Dc and this defines a critical atom num-
ber Nc. For the special case of a harmonic trap of radial frequency ωr we find: Nc =
(kBT/(ℏωr))2

∫ µ̄c
−∞ dµ̄D(µ̄), which depends weakly on g̃ and is above the critical atom num-

ber for the BEC transition of an ideal gas in a harmonic trap N0
BEC = (kBT/(ℏωr))2π2/6.

In fact N0
BEC already provides a fairly good estimate of Nc for a harmonically trapped

Bose gas with small g̃.
Ultracold atom experiments deal with dilute atomic samples, usually trapped using

magnetic fields or optical forces at the minimum of a harmonic potential V (r) =M(ω2
xx

2+
ω2
yy

2 + ω2
zz

2)/2, characterized by three oscillation frequencies ωx,y,z. If the typical energy
of an atom is larger than all harmonic oscillator energies ℏωx,y,z, its motion will explore a
three-dimensional volume. On the contrary, if its energy is comparable to or smaller than
ℏωz, it must be described using the quantized energy states of the harmonic oscillator in
the z direction. When there is not enough energy to populate the first excited state in
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the z direction, the atomic motion becomes effectively two dimensional.
A weakly interacting Bose gas is characterized by two natural energy scales: the

chemical potential µ and the temperature kBT . When the temperature decreases, we
expect that the population of all thermal excitations in the z direction decrease, thus
freezing this degree of freedom for the thermal cloud1. Obviously this is a continuous
phenomenon and the crossover between the two regimes occurs when kBT ≃ ℏωz. The
chemical potential gives the order of magnitude of the energy available to promote a
particle in the quasi-condensate to an excited state after a two-body collision. Due to
symmetry reasons the first available excited state must be even and therefore the crossover
is expected at µ ≃ 2ℏωz.

Energy
ℏωx,y ℏωz

2ℏωz

frozen thermal excitations

frozen quasi-condensate

kBT

µ

To realize a true two-dimensional system requires to have µ, kBT ≪ ℏωz, and most
experiments are realized in the quasi-two-dimensional regime: µ ≤ ℏωz and kBT ≃ ℏωz.
In this regime the strictly two-dimensional limit is not valid anymore but the transverse
excited states can be taken into account. According to [Holzmann et al., 2008], it affects
the effective interaction strength, that can be approximated as:

g̃ =
√
8π
as
az

√
tanh

[
ℏωz
2kBT

]
, (2.3)

where as is the s-wave scattering length, az =
√

ℏ/(Mωz) is the length scale of the
transverse harmonic oscillator. This expression is valid if the excited states are populated
mainly because of the temperature and not because of the interactions, requiring µ ≪
2ℏωz. In the limit kBT ≪ ℏωz one recovers the usual two-dimensional interaction strength.
Then in the limit of small population in the excited states, the quasi-two-dimensional
phase space density in the Hartree-Fock mean-field limit reads [Holzmann et al., 2008]:

D = −
∞∑

nz=0

ln
[
1− eµ̄−gD/π−nzℏωz/(kBT )

]
. (2.4)

Surprisingly this simple quasi-two-dimensional semi-classical model allows to compute
accurately the critical atom-number for realistic experimental parameters, taking into
account the small transverse states occupation. This was quantitatively benchmarked
against quantum Monte-Carlo simulations [Holzmann et al., 2008]. We will make use of
this property in the remaining of this manuscript to estimate the superfluid transition
point in inhomogeneous quasi two-dimensional Bose gases.

Since ten years, the progress in the tailoring of optical traps has enabled the realization
of box-like traps, realizing uniform weakly interacting Bose gases in three or two dimen-
sions [Chomaz et al., 2015; Gaunt et al., 2013]. Once combined with the ability to tune
the interaction strength thanks to Feshbach resonances they offer unique opportunities to
directly test the homogeneous models with minimal assumptions [Fletcher et al., 2015].

However it is interesting to point out that, thanks to the local density approximation,
combined with the ability to calibrate extremely well the trap potential in experiments,

1More precisely the atom number in the transverse excited states saturates [Chomaz et al., 2015; van
Druten and Ketterle, 1997].
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Figure 2.2: Sketch of the adiabatic
potential picture with an atom of
total spin F = 1, for a) reso-
nant rf dressing of a linear potential
and b) off-resonant rf dressing of a
quadratic potential. Here Ω0 is the
rf coupling amplitude and δ0 is the
detuning with respect to the Larmor
frequency at the trap minimum.

the inhomogeneity of the system can also be an asset. For example, by measuring precisely
the in-situ density profile of a atomic cloud in a well known potential, it is possible to
extract the equation of state from a single experimental measurement [Desbuquois et al.,
2014].

2.1.3 Adiabatic potentials

In the BEC group at Laboratoire de physique des lasers we realize quasi-two-dimensional
ultracold atomic ensembles using adiabatic potentials proposed in [Zobay and Garraway,
2001, 2004] and pioneered in the group [Colombe et al., 2004]. This technique relies on a
very simple mechanism. Consider an atom in its electronic groundstate, with a total spin
F̂ , in the presence of a inhomogeneous magnetic field B0(r). For weak enough fields, the
resulting Hamiltonian is described by a linear Zeeman term and assuming that the atomic
spin adiabatically follows the field direction, it reads: Ĥ = −µBgF |B0(r)|F̂z/ℏ, where µB
is the Bohr magnetron and µF is the gyromagnetic factor. Now if we add a homoge-
neous radio-frequency (rf) field of frequency ωrf we can induce transitions between the
eigenstates of F̂z and, for sufficiently strong rf fields induce avoided crossings between the
levels. In the rotating wave approximation, the Hamiltonian becomes, after a appropriate
unitary transform:

Ĥ = ℏ
√

(ωrf − ω0(r))2 + Ω(r)2F̂z, (2.5)

where ω0(r) = |µBgFB0(r)|/ℏ is the local Larmor frequency and Ω(r) is the local coupling
strength induced by the rf field.

The energy levels of Hamiltonian (2.5) are sketched on figure 2.2 for an atom with
total spin F = 1. For the resonant dressing scheme, the upper dressed state energy
is minimum on the surface corresponding to the resonance condition ω0(r) = ωrf . This
surface corresponds to a isomagnetic value of the norm of the static magnetic field. In this
configuration the avoided crossing between dressed states is directly given by the value of
the coupling amplitude. Therefore it naturally realizes a two-dimensional confinement to
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the resonant surface and to increase the confinement strength (i.e. increase the curvature
of the avoided crossing) one can reduce the rf coupling amplitude. This also leads to
increased Landau-Zener losses which limits in practice the achievable confinement. With
the off-resonant dressing scheme, it is possible to create tunable barriers, thus realizing
for example a double well geometry [Schumm et al., 2005].

The capabilities of adiabatic potentials can be extended by modulating the static
potential on a time scale fast as compared to the atomic motion but slow with respect to
the rf-field period, thus realizing a time averaged adiabatic potential (TAAP). This can be
used to create new trapping geometries [Lesanovsky and von Klitzing, 2007]. Recently it
was shown that the combination of several dressing frequency, both in the radio-frequency
and micro-wave frequency domains, addressing simultaneously the Zeeman levels of the
two groundstate hyperfine manifolds [Luksch et al., 2019] enables even more possibilities
[Bentine et al., 2017; Harte et al., 2018], as the realization of mixtures in a adiabatic
potential [Bentine et al., 2020].

2.2 Models for deeply degenerate trapped Bose gases
This section introduces theoretical models that are well adapted to describe the dynamics
of degenerate Bose gases in the mean-field limit, namely the Gross-Pitaesvekii and classical
field equations. It discusses a generic method to solve both models numerically using exact
(up-to numerical errors) spectral schemes. A discussion of other relevant models can be
found in several papers [Castin, 2001, 2004; Dalfovo et al., 1999; Proukakis and Jackson,
2008].

2.2.1 The Gross-Pitaevskii equation

To model a zero-temperature superfluid we use the well established Gross-Pitaevskii equa-
tion describing the time evolution of the mean-field wavefunction ψ(r, t) in the presence
of a eventually time-dependent potential V (r, t) [Dalfovo et al., 1999]:

iℏ
∂

∂t
ψ(r, t) =

(
−ℏ2∇2

2M
+ V (r, t)− µ+ g3D|ψ(r, t)|2

)
ψ(r, t), (2.6)

where g3D = 4πℏ2as/M is the usual low energy interaction strength characterized by
the s wave scattering length as. Equation (2.6) captures accurately the low temperature
dynamics of a trapped superfluid. When V (r, t ≡ V (r) is static and the chemical potential
is large, the kinetic energy term can be neglected, resulting in the celebrated Thomas-
Fermi solution: |ψ(r, t)|2 = (µ− V (r))/g3D. The linearization of equation (2.6) around a
stationary solution results in the Bogoliubov-de-Gennes equations that describe the low
energy modes of a superfluid [Dalfovo et al., 1999].

In order to solve equation (2.6) we use a spectral method: we first compute the
energies En and eigenstates ϕn(r) of the one body problem (i.e. for g3D = 0), where n
is a label indexing all the states. We then expand the wavefunction onto the eigenstates:
ψ(r, t) =

∑
n cn(t)ϕn(r), where cn(t) are time-dependent complex coefficients. In order

to keep a computationally tractable problem we introduce the set of low energy states
C = {n | En < Ecut} and truncate the expansion, resulting in a spectral formulation:

iℏ
dcn(t)

dt
= (En − µ)cn(t) + g3D

∫
drϕn(r)

∗|ψC(r, t)|2ψC(r, t), (2.7)
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where ψC =
∑

n∈C cn(t)ϕn(r) is the truncated field. The advantages of the spectral for-
mulation are [Blakie, 2008]:

• we have now to deal only with a set of nonlinear coupled ordinary differential equa-
tions, instead of the original nonlinear partial differential equation,

• for most common potentials (hard-wall box, periodic boundary conditions, harmonic
or polynomial traps and any combination) the non-linear term can be evaluated
exactly, without approximations or aliasing, using a quadrature formula for the
integral,

• the truncation is done in a controlled way, through the choice of the cutoff energy
Ecut.

Obviously the fact that the spectral method relies on the one-body eigenstates makes it
efficient only if the trapping potential can be well approximated by a simple formula, as
a harmonic oscillator for example. This is the case for a cloud at equilibrium near the
bottom of the shell-shaped potential but it cannot easily deal with the curvature. When
the spectral method is not applicable, we rely on finite difference or split-step methods
for the solution of equation (2.6).

The spectral formulation, as defined by equation (2.7), naturally implements the di-
mensional reduction if Ecut is chosen below the energy of the first transverse excited state.
It even allows to study the dimensional crossover at zero-temperature, by choosing a large
Ecut value and computing the groundstate as a function of the atom number N0, for ex-
ample. At large N0, the density profile will be close to a three-dimensional Thomas-Fermi
profile, whereas at small N0 it should converge to an effective two-dimensional profile with
a frozen vertical direction.

2.2.2 Extension to finite temperatures: classical fields

The Gross-Pitaevskii equation arises as the mean field limit of a many body nonlinear
equation. Interestingly the spectral expansion allows to write an extended equation that
keeps beyond mean field terms and within the most simple approximations results in the
simple growth stochastic Gross-Pitaevskii equation:

iℏ
∂

∂t
ψC(r, t) = PC

[
(1− iγ)

(
−ℏ2∇2

2M
+ V (r)− µ+ g3D|ψC(r, t)|2

)
ψC(r, t) + η(r, t)

]
,

(2.8)
where PC[f(r)] =

∑
n∈C
∫
dr′ ϕn(r)ϕn(r

′)∗f(r′) is the projector onto the low energy
modes. By treating the high energy modes above Ecut as a reservoir and assuming that
this reservoir has a well defined temperature T , it can be shown that interactions between
low and high energy modes results in a fluctuating field η(r, t) acting onto low energy
modes associated to a damping γ. This is reminiscent of Einstein’s fluctuation–dissipation
relations, applied here to a non-linear system. The fluctuating field possesses Gaussian
correlations:

⟨η(r′, t′)∗η(r, t)⟩ = 2ℏγkBTδ(r − r′)δ(t− t′) (2.9)

where the average ⟨· · ·⟩ is an ensemble average over many realizations and the damping
rate can be estimated from the microscopic parameters of the theory γ ≃ 8(as/Λ)

2.
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It is also very convenient to write this stochastic partial differential equation using the
spectral formulation:

iℏ
dcn(t)

dt
= (1− iγ)

(
(En − µ)cn(t) + g3D

∫
drϕn(r)

∗|ψC(r, t)|2ψC(r, t)

)
+ ηn(t), (2.10)

where the stochastic term ηn acting on mode n is now characterized by:

⟨ηn(t′)∗ηm(t)⟩ = 2ℏγkBTδn,mδ(t− t′). (2.11)

The resulting set of coupled nonlinear stochastic ordinary differential equations can be
solved using an appropriate stochastic integration scheme.

For high energy modes, such that the non-linear term contribution to the dynamics is
small, Equation (2.10) can be solved and the equilibrium population is found as:

⟨|cn|2⟩ ≃
kBT

En − µ
, (2.12)

which corresponds to the Rayleigh-Jeans distribution, the high-temperature limit of the
Bose-Einstein distribution. This justifies the use of this formalism to study finite tem-
perature effects in ultracold atom experiments, in the limit of high occupation num-
ber. More precisely, equation (2.12) allows to estimate the population of the modes at
the cutoff energy: ncut ≃ kBT/(Ecut − µ) and as the classical field description is valid
only for sufficiently populated modes, with occupation ≥ 5, the cutoff can be chosen as:
Ecut = µ+ 0.2× kBT .

The classical field equation (2.10) is parametrized by the chemical potential µ and the
temperature T , through the fluctuations of the stochastic fields ηn, see equation (2.11).
Starting from the vacuum, cn(t = 0) = 0, the atom number first increases and after
a typical time of ∼ ℏ/(γµ) it saturates and reach a quasi-steady state. At this point
the time evolution of equation (2.10) can be seen as a sampling process of the grand-
canonical thermodynamical ensemble of the Rayleigh-Jeans distribution, which may be
used to estimate finite temperature equilibrium properties of the state. If necessary, the
high energy modes of the reservoir, for E > Ecut, can be accounted for using a simple semi-
classical model, at least to describe the equilibrium density profiles. The main limitation
of this approach is that equation (2.10) cannot capture the dynamics of the reservoir,
which typically requires to solve coupled equations [Proukakis and Jackson, 2008].

2.2.3 Time-of-flight scaling solution

In the experiment, it is often convenient to measure the density distribution after a time
of flight: the atoms are released from the trap at t = 0 s, fall under the influence of gravity
and the cloud expands under the influence of the initial velocity distribution and the two-
body interactions, resulting (for T < Tc) in a bimodal density distribution [Ketterle et al.,
1999]:

ntof(r, t) = nd(r, t) + nT (r, t),

where t is the time-of-flight duration, nd(r, t) and nT (r, t) are the degenerate (superfluid
or condensate) and thermal cloud density distributions, respectively. It is reasonable to
assume that the thermal cloud density distribution after a sufficiently long time of flight
is very close to a three dimensional Gaussian:

nT (r, t) =
NT

(2π)3/2σxσyσz
e
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z ,
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where we expect σx = σy = σz ≃ t ×
√
kBT/M for a equilibrium state, allowing to

estimate the temperature.
Due to the fact that we use oblate harmonic traps with typically ωz/ωr > 10, the

degenerate density profile is well approximated by a hybrid form [Hechenblaikner et al.,
2005]:

nd(r, t) = n0

(
x

λx
,
y

λy

)
e
− z2

λ2zσ
2

√
πσλxλyλz

, (2.13)

where n0(x, y) is the in situ in plane Thomas-Fermi density profile, possibly including be-
yond harmonic corrections as a quartic term, see section 3.3.1, λx,y,z are time-dependent
scaling factors and σ is the transverse size corrected for the effect of interactions [Hechen-
blaikner et al., 2005]. By combining the scaling equations described in [Castin and Dum,
1996; Kagan et al., 1996] with the hybrid density profile [Hechenblaikner et al., 2005] and
including a possible rotation around the vertical axis in the diffuse vorticity limit [Cozzini
and Stringari, 2003], see section 3.2.1, I obtain the self-consistent set of equations:

σ2

a2z
− a2z
σ2

=
g3D√
2πσℏωz

⟨n0(x, y)⟩
N0

, (2.14a)

λ̈x =
Ω2

λ3x
+

g3D ⟨n0(x, y)⟩
2
√
2πM ⟨x2⟩σ

1

λ2xλyλz
, (2.14b)

λ̈y =
Ω2

λ3y
+

g3D ⟨n0(x, y)⟩
2
√
2πM ⟨y2⟩σ

1

λxλ2yλz
, (2.14c)

λ̈z =
a4z
σ2

ω2
z

λ3z
+
g3D ⟨n0(x, y)⟩√

2πMN0σ3

1

λxλyλ2z
, (2.14d)

where in these equations ⟨. . .⟩ =
∫
dxdy n0(x, y) × · · · and N0 is the condensate atom

number. If the trap geometry is known precisely, the in-situ density profile n0(x, y) can
be computed and the solutions of equations (2.14) can be tabulated for various atom
numbers and rotation frequencies. It is then sufficient to measure the atom number in
the degenerate part of the bimodal density profile and its rms sizes to infer the in situ
parameters, see section 3.2.1.

2.3 Experimental realization

I now detail how we succeeded in reaching the quasi two-dimensional limit using adiabatic
potentials, achieving the first two-dimensional superfluid trapped only by a magnetic
potential, in a extremely smooth and well controlled environment. This work was carried
out mainly during the PhD theses of [Merloti, 2013] and [De Rossi, 2016].

2.3.1 The dressed quadrupole trap

We realize adiabatic potentials in the dressed quadrupole trap configuration: the static
magnetic field is created by two coils in anti-Helmholtz configuration, creating a magnetic
field B0(r) = b′(xex + yey − 2zez), where b′ is the gradient. The rf field is generated by
three coils, see section 1.1.4, producing a circularly polarized field along z: Brf(r, t) =
Brf(cos [ωrft] ex + sin [ωrft] ey), resulting in a inhomogeneous Rabi coupling between the
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Zeeman sub-states [Garraway and Perrin, 2016; Perrin and Garraway, 2017]:

Ω(r) =
Ω0

2

(
1− 2z

ℓ

)
, (2.15)

where Ω0 = |gF |µBBrf/ℏ is the maximum coupling and ℓ =
√
x2 + y2 + 4z2. For an atom

in the F = 1 electronic groundstate the total trapping potential reads in the rotating
wave approximation:

V (r) = ℏ
√

(ωrf − αℓ)2 + Ω(r)2 +Mgz, (2.16)

where α = |gF |µBb′/ℏ is the magnetic field gradient in frequency units, M is the atomic
mass and g the gravitational acceleration. The atoms are trapped near the resonant
surface ℓ = ωrf/α ≡ r0, that defines an ellipsoidal shell-shaped surface with a radius
at equator r0, and because of gravity accumulate at the bottom. The resulting trap is
harmonic to a very good approximation and is characterized by [Merloti et al., 2013b]:

• its equilibrium position req = (0, 0,−R), where

R =
r0
2

(
1 +

ϵ√
1− ϵ2

Ω0

ωrf

)
, (2.17)

and ϵ =Mg/(2ℏα) quantifies the gravitational sag;

• its vertical oscillation frequency, given by the curvature of the avoided crossing
between Zeeman levels:

ωz = 2α

√
ℏ

MΩ0

(1− ϵ2)3/4 (2.18)

• and its in plane oscillation frequencies ωx = ωy = ωr, for a circular polarization,
with

ωr =

√
g

4R

(
1− ℏΩ0

2MgR

√
1− ϵ2

)1/2

(2.19)

corresponding to the pendulum frequency of small oscillations on the equilibrium
surface.

For most experiments this level of approximation is sufficient to describe the trapping
potential, and the surface curvature does not play a significant role, except to fix the
order of magnitude of the pendulum frequency. Extensions of this simple model will be
discussed later, when considering a gravity compensation scheme in section 2.4.1 or the
physics in a rotating frame in section 3.3.1

What is interesting with this potential is that the vertical trapping frequency ωz can
be tuned while keeping the radial one ωr almost constant. In particular by increasing
simultaneously the magnetic gradient α and the dressing frequency ωrf , while keeping
Ω0 constant2 allows to tune the ratio ωz/ωr and to enter in the quasi-two-dimensional
regime. We thus achieved the first quasi two-dimensional Bose gas in a pure magnetic
trap [Merloti et al., 2013b], where we proved the bi-dimensional character by studying the
time-of-flight expansion [Hechenblaikner et al., 2005] and the frequency of the in-plane
breathing and quadrupole modes.

2In practice Ω0 itself depends on the dressing frequency ωrf because of the frequency response of the
dressing antennas, that behave typically as a RLC circuit.
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Figure 2.3: Hybrid trap configurations used to load the shell trap, a) from a blue-
detuned plug trap configuration [Merloti et al., 2013b] and b) from a red-detuned dimple
beam configuration [Rey et al., 2022], approximately represented on the same scale. The
transfer from the plug-beam induces necessarily a horizontal displacement that can excite
center of mass oscillations in the x direction, while the transfer from the dimple trap can
be achieved without moving the atoms. The plug beam is typically focused onto a waist
of ∼ 35 µm for a total power of 4W, while the dimple beam has a waist of ∼ 70 µm for a
power of less than 2W.

2.3.2 Loading strategies

As the dressed quadrupole trap is a two-dimensional surface trap, it cannot be loaded di-
rectly from a magneto-optical trap or from a relatively hot atomic cloud held in a magnetic
trap. Our loading strategy consists first in evaporating the cloud held in the quadrupole
trap, down to a temperature close to the Bose-Einstein condensation transition. This is
not possible in a bare quadrupole trap, because of Majorana losses due to spontaneous
spin-flips at the trap center where the magnetic field vanishes. To avoid this we use an
auxiliary optical beam to prevent this losses, realizing a hybrid quadrupole-optical trap.
For a long time we used a blue detuned beam to repel atoms from the trap center [Dubessy
et al., 2012b] and more recently we switched to a red detuned beam to attract the atoms
at the desired position [Rey et al., 2022].

Both methods allow to load efficiently a Bose-Einstein condensate in the shell shaped
trap [Merloti et al., 2013b; Rey et al., 2022], while benefiting from the large initial volume
of the quadrupole magnetic trap potential, and a favorable scaling for the initial evapo-
ration stage (the phase-space density scales as T ∝ N−3, see section 1.2.3). To transfer
the cold atomic cloud in the shell-shaped trap one has to turn on the rf dressing, which
requires some precautions. The atoms are held at a given magnetic field, resulting in a
well defined Larmor frequency ωi in the hybrid trap, that can be measured precisely with
a weak rf probe, by monitoring the induced losses or heating as a function of frequency.

Figure 2.3 compares the shell trap loading procedure starting from the two hybrid
trap configurations. In short, the transfer from the red detuned dimple trap can be done
without moving the atoms by positioning the beam close to the shell trap equilibrium
position. It is then sufficient to turn on the dressing field while ramping down the dimple
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beam intensity to transfer the atoms without significant excitations [Rey et al., 2022]. The
plug trap transfer is slightly more complicated because the initial and final trap position
are not the same. Indeed it is very easy to excite center of mass oscillations along the x
direction. Moreover we find that it is necessary to expand the shell trap radius during the
loading while reducing the plug beam intensity in order to minimize residual excitations.
We attribute this to a slowly fluctuating rugosity pattern superimposed onto the plug
beam profile, probably due to imperfections of the glass cell and slow drifts of the laser
pointing, that changes the optical potential from shot to shot. This effect is mitigated
by inflating the shell and avoiding the high intensity regions during the transfer [Merloti
et al., 2013b]. Note that the plug beam must be slightly misaligned to the left (or right)
of the quadrupole trap center, otherwise two condensates are obtained in the plug trap,
that will be transferred simultaneously in the dressed trap, resulting in general in the
formation of spontaneous vortices [Merloti, 2013]. The only drawback of using the red
detuned dimple trap is an increased heating rate during the evaporation stage, that may
be of technical origin and is still under investigation.

2.3.3 Low energy collective modes

Our first interest in the study of quasi two-dimensional Bose gases was to use the low
energy collective modes of the superfluid [Stringari, 1996b] to probe the dimensional
crossover and the superfluid transition. Thanks to the high degree of control on the
adiabatic potential geometry, and on the stability and smoothness of the potential, we
studied several of these modes, using two approaches. On the one hand, we can modulate
a trap parameter for some time and look for changes in the density profile, as a function of
the modulating frequency, for example the width of the cloud along one axis. Usually the
recorded curve exhibits one or several resonances that correspond to specific collective
modes. On the other hand, we can prepare an out-of equilibrium gas, for example by
quenching a trap parameter, and record the time evolution of the density profile. By
plotting the time evolution of, for example, the width of the cloud along one axis, we
obtain typically oscillations from which the mode energy can be estimated.

Maxim Olshanii suggested to study the radial breathing mode frequency ωB in the
three-dimensional to two-dimensional crossover. As mentioned before, the ratio µ/(2ℏωz)
can be used to describe this crossover and the breathing mode frequency is expected
to reach 2ωr in the two-dimensional limit [Pitaevskii and Rosch, 1997] while the three-
dimensional value, for a zero-temperature Bose-Einstein condensate is

√
10/3ωz. This

work was motivated by the prospect of observing a quantum anomaly shift on the breath-
ing mode frequency for a strictly two-dimensional system [Olshanii et al., 2010]. While
this effect is too small to be observed in our setup, we provided a study of systematic
effects associated to the third dimension that can prevent the observation of the quantum
anomaly [Merloti et al., 2013a].

Figure 2.4 reports a measurement of the breathing mode frequency for three different
ratios of µ/(2ℏωz), compared to a perturbative expansion and Gross-Pitaevskii simula-
tions. The agreement of the model with the measurements is reasonable and confirms
that the breathing mode frequency is sensitive to the extent of the condensate in the
third dimension. This measures where obtained using a combination of resonant and
quench excitations of the breathing mode.

When using quench excitations we often noticed that multiple modes were excited
simultaneously, which makes sometimes the analysis of the dynamics difficult. During my
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Figure 2.4: Radial monopole mode frequency in a zero temperature quasi two-dimensional
Bose gas, as a function of µ/(2ℏωz). The red squares are measurements, the error bars
reflecting the fit uncertainties. Black circles are the result of a three-dimensional Gross-
Pitaevskii simulation, connected by a interpolating black curve. The dashed green line is
the prediction from a simple perturbative expansion, and the two horizontal dashed lines
indicate the two dimensional ωB = 2ωr and three dimensional ωB =

√
10/3ωr limits. The

small blue line indicates the expected quantum anomaly shift, two small to be resolved
in the experiment.
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Figure 2.5: An example of principal component analysis applied to the decomposition
of the dynamics of a superfluid onto its eigen-modes. A given picture from the initial
dataset is expanded as a sum of the mean picture and a weighted sum of all principal
components. The spatial structure of the principal components corresponds to what is
expected for collective modes. In this example the two dipoles modes are visible, as well
as the scissors mode and a quadrupole like mode.
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early career I had the opportunity to teach an introductory course on signal analysis to
first year students, in which I discussed several techniques to analyze and classify pictures,
among which the principal component analysis (PCA) [Jolliffe, 2012]. This method relies
on the statistical correlations between several signals to extract useful information from
a dataset. I had the idea to apply it to a series of pictures recording the time evolution of
a quasi-two dimensional condensate and it turned out to be very effective to identify the
collective modes [Dubessy et al., 2014], as shown in figure 2.5. In prior works, PCA was
used to filter imaging noise, as demonstrated in [Chiow et al., 2011; Desbuquois, 2013;
Segal et al., 2010], and especially in the context of atom interferometry [Dickerson et al.,
2013; Sugarbaker et al., 2013].

The reason why PCA is able to detect the collective modes in the dynamics of the
density profile is that they have specific spatial density correlations. Indeed PCA relies
on the diagonalization of the dataset covariance matrix, whose eigenvectors –the princi-
pal components– are statistically independent pictures allowing to reconstruct the density
profile at any time. We have proven that the principal components are indeed expected to
contain the Bogoliubov eigenmodes and reflect accurately their density profile [Dubessy
et al., 2014]. A detailed analysis of the special role of the scissors mode to probe su-
perfluidity is discussed in section 3.1. Recently PCA was used to study the superfluid
to supersolid transition in quantum droplets [Hertkorn et al., 2021; Natale et al., 2019]
and the emergence of a turbulent cascade in a driven three dimensional Bose-Einstein
condensate [Gałka et al., 2022].

2.4 Going beyond flatland
The shell-shaped geometry has attracted a lot of interest recently, due to the prospect
of realizing this geometry in a micro-gravity environment aboard the International Space
Station. Here the key point is that, for an appropriate adiabatic potential, the absence of
gravity enables to cover, in principle the whole surface with a thin film of ultracold atoms,
thus realizing a topologically non trivial hollow superfluid. This experiment is certainly
very difficult, given the constrains of the remote operation of a space based experiment
and has not succeeded yet. Meanwhile, the first bubble shaped Bose-Einstein condensate
was obtained, on earth by cleverly using a Bose-Bose mixture in the immiscible regime,
where the outer lighter specie forms a shell around heavier one in a standard harmonic
trap. Although it emulates the desired shape, the dynamics of this system will certainly
be richer and more complex than in the case of the simple shell-shaped superfluid, due to
the coupling between the two species.

Vanderlei Bagnato convinced us that it was worth trying to address the realization of
such filled bubble geometries on earth with our apparatus, to asses the feasibility of such
geometry. This work is described in the PhD thesis of Yanliang Guo [Guo, 2021].

2.4.1 An effective anti-gravity force

In fact the dressed quadrupole trap embeds a very convenient knob to compensate gravity
on the resonant shell surface. In the simplest approximation, combining (2.15) and (2.16),
the trap potential on the resonant surface ℓ = r0, for a perfect circular rf polarization,
reads:

Vres(z) =
ℏΩ0

2

(
1− 2z

r0

)
+Mgz, (2.20)
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where z is constrained on the resonant ellipsoidal surface: ρ2 + 4z2 = r20. The resulting
potential is a sum of two opposite gradients and, at this level of approximation, the effect
of gravity can be perfectly compensated by adjusting the parameters such that:

ℏΩ0 =Mgr0. (2.21)

Therefore by tuning the rf coupling amplitude, the rf dressing frequency or the magnetic
field gradient it should be possible to compensate the gravity in our trap. This level of
approximation allows to build an intuitive and qualitative picture of the experiment I will
describe in the next sections. However the resulting model is too simple to capture all
the effects but by inspecting the formula for the radial trapping frequency ωr (2.19), the
onset of gravity compensation in the presence of the gravitational sag is achieved when
ωr vanishes, leading to a a priori improved criterion:

ℏΩ0 =Mg
2R√
1− ϵ2

. (2.22)

2.4.2 Controlled expansion of a quantum gas in a shell trap

In order to test this prediction we decided to monitor the changes in atomic density in the
trap using our in situ vertical imaging system, when increasing the magnetic field gradient,
at fixed coupling and rf dressing frequency [Guo et al., 2022]. It is simpler to change the
gradient (i.e. the current flowing in the quadrupole coils), because the control of the
Rabi coupling requires the simultaneous control over the amplitudes of both antennas
and the rf dressing frequency affects the rf coupling strength and polarization because of
the antennas resonances.

We first calibrated precisely the quadrupole magnetic gradient in the range α ∈
[4.16(6), 8.49(9)] kHz µm−1 as a function of the current flowing in the coils by monitoring
the displacement of the cloud after time of flight for a rather small rf coupling amplitude
Ω0/ωrf ∼ 0.13, such that the rotating wave approximation and the prediction of (2.17)
are valid. We then increase the rf coupling to a higher value Ω0 = 2π × 85.0(5) kHz,
measured by rf spectroscopy. This value of the rf coupling enables to reach the compen-
sation threshold at a moderate magnetic field gradient. According to (2.21) it occurs for
α ≃ 7.54 kHz/µm, while the improved criterion (2.22) gives a slightly higher prediction
α ≃ 7.90 kHz/µm.

The results of the experiments, as shown in figure 2.6, were at first puzzling. Indeed
the progressive increase of the gradient results first in an expansion of the cloud on the
bubble surface, as seen in the in situ top view images but leads to the formation of a stable
ring shape structure that was not expected in the simple model of (2.20). Moreover the
transition between the two regimes occurs at a gradient below 7.40(8) kHz/µm significantly
smaller than expected. After a double check of all measurements and a precise tuning of
the rf field to a circular polarization, we decided to perform numerical simulations of the
expected groundstate, using the Gross-Pitaevskii equation.

The simulations, without adjustable parameters, were able to reproduce quantitatively
the experimental measurements, provided that beyond rotating-wave approximation terms
are taken into account in the computation of the dressed state potential and the resolution
of the imaging objective is used to blur the simulated density profiles. To achieve high ac-
curacy and efficient memory usage in the computation of the groundstate it was necessary
to use a mapping to ellipsoidal coordinates. The simulations confirm the appearance of
the stable ring shape, that is a genuine effect due to transverse confinement and the fact
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α/(2π) =5.77(7)

a)

b)
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Figure 2.6: In situ atomic density distribution for an ensemble of N ≃ 105 atoms, ev-
idencing the gravity compensation mechanism and the spontaneous change of topology,
as the quadrupole gradient α increases. a) Experimental measurement, b) and c) full GP
numerical simulation, top and side views respectively. The pink vertical line corresponds
to the observed threshold for gravity compensation, slightly lower than the naive expec-
tation α/(2π) ≃ 7.54(4) kHz/µm (2.21). For each picture of a) and b) the field of view is
120 µm×120 µm, the color scale spans [0–35]µm−2, and the dashed red circles indicate the
ellipsoidal radius at equator ρ = r0. b) The simulated density profiles are convoluted with
a Gaussian of 1/

√
e-radius σ = 4 µm to reproduce the experimental imaging resolution.

For c) the field of view is 60 µm× 60 µm and the dashed red line is the shell trap surface.

that the shell-shaped potential is non separable. A detailed analysis of beyond rotating
wave approximation effects is presented in appendix B.

2.4.3 The effect of the transverse confinement

The missing part in the simple approximation of (2.20) is the zero-point energy of the
transverse confinement to the surface. Indeed, the local transverse confinement at a given
height on the surface is well captured by the simple expression [Guo et al., 2022]:

ω⊥(z) ≃ α(z)

√
ℏ

MΩ(z)
, (2.23)

where α(z) = α
√

1 + 12z2/r20 is the local gradient in the transverse direction and Ω(z) =
Ω0/2 × (1 − 2z/r0) is the rf coupling on the surface, as expected when considering the
local avoided crossing between dressed states. The associated zero-point energy can be
included in the effective potential on the surface:

Vsurf(z) =
ℏΩ0

2
+

(
Mg − ℏΩ0

r0

)
z +

ℏω⊥(z)

2
, (2.24)

where the last term, proportional to (2.23) diverges as z approaches the north pole z →
r0/2, thus providing a very effective repulsive barrier, stabilizing the ring shape.

It is interesting to point out that the rotating wave approximation of the adiabatic
potential captures qualitatively all the phenomena observed in the experiment and that
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simple analytical models are obtained when neglecting the gravitational sag. However,
to obtain the quantitative agreement shown in figure 2.6, it is necessary to include all
the effects: beyond rotating wave approximation modeling of the potential, gravitational
sag and the effect of the inhomogeneous transverse zero-point energy [Guo et al., 2022].
Finally, the density modulations with three-fold symmetry in the annular gases, seen in
the two rightmost pictures of figure 2.6, can be explained by the gradient of the rf coupling
field on the scale of the shell radius.

Conclusion
In this chapter I presented a short introduction to two-dimensional physics, focused on
the phenomena we have explored in the group and I explained how we realize quantum
Bose gases in two-dimensions using adiabatic potentials. I discussed the interest of using
the collective modes of a superfluid to probe the dimensional crossover and introduced a
fit free method to identify these modes directly from a collection of experimental density
profiles, using a generic tool of signal analysis, the principal component analysis. Finally I
presented an original experiment achieving a controlled expansion of a degenerate Bose gas
on the shell-shaped surface that leads to a ring shape, when gravity is over-compensated,
stabilized by the transverse zero-point energy. In some sense it provides a direct visual
proof of the fact that the atoms are truly experiencing a quantized transverse potential.

Before discussing out-of equilibrium phenomena in the next chapter, I would like
to point out that one of the strengths of the adiabatic potentials is that they can be
determined to a very good precision (at least for the needs of a ultracold atom experiment),
from a few simple and independent measurements (gradient calibration, rf spectroscopy, rf
polarization tuning, oscillation frequencies). They also provide very long lifetimes and low
heating rates, in our experiment typically more than 120 s and about 2 nK/s respectively,
thus enabling the study of superfluid dynamics over a long time. In the next chapter I
will show that this enables the study of fast rotating superfluids.

55



Chapter 2. Two-dimensional superfluids

56



Chapter 3
Rotating superfluids on a curved surface

This chapter reports the results of experiments that we performed to probe and char-
acterize superfluidity in a weakly interacting trapped quasi two-dimensional Bose gas.
Superfluidity is a fascinating phenomenon, first observed in liquid Helium, then in ultra-
cold atomic gases and more recently in fluid of lights. It manifests itself through specific
phenomena, as the existence of quantized vortices, of a critical velocity or the propa-
gation of a second sound, that are all related to out-of-equilibrium physics. It is espe-
cially interesting to study it in quasi two-dimensional systems as it is characteristic of
the Kosterlitz-Thouless transition. Moreover it is not easy to predict the dynamics of
a finite temperature quasi two-dimensional system as models usually rely on simplifying
assumptions, that can be tested in the experiment. I describe in this chapter several ex-
periments that give some insight into the superfluid dynamics in two-dimensions. These
experiments make use of the high degree of control on the trap geometry achieved with
adiabatic potentials, and in particular the absence of rugosity, and the long lifetime in
the trap.
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3.1 How to probe superfluidity ?

To study superfluidity several types of experiments can be performed. On the one hand,
one can measure equilibrium properties, as the equation of state, the static structure
factor, the dispersion relation, or perform interference measurements between two samples
to characterize phase coherence. The outcome of these experiments can be compared to
the predictions of accurate equilibrium models and thus indirectly probe the superfluid
transition. For example, very accurate measurements of the equation of state in weakly
interacting trapped Bose gases agree well with the theoretical prediction for the superfluid
transition [Desbuquois et al., 2014], similarly, interference measurements allow to evidence
the predicted exponential to algebraic transition in the coherence length [Hadzibabic et al.,
2006; Sunami et al., 2022] and Bragg spectroscopy allows to recover the expected low
energy spectrum. On the other hand one can directly probe the dynamical response in
the superfluid phase and show that it is different than the one of the normal phase. For
example, one can evidence the existence of a critical velocity for the creation of excitations
using a moving obstacle [Desbuquois et al., 2012; Kwon et al., 2015], or the nucleation of
quantized vortices by rotating the trap [Madison et al., 2000], or the existence of specific
collective modes in the response to a quench [Maragò et al., 2000].

Interestingly, the latter two criteria were not explored before for a quasi two-dimensional
weakly interacting Bose gas, probably due to the difficulty of realizing a smooth very
oblate and tunable trap potential. As our experiment is well adapted to perform these
measurements we decided to investigate these phenomena. I have already shown that we
were able to recover the collective modes of a quasi-two dimensional superfluid thanks to
the principal component analysis, see section 2.3.3, and we decided to measure how the
frequency of one of these modes evolved through the superfluid transition. This study
was initiated during the PhD thesis of [Merloti, 2013] and finalized during the PhD thesis
of [De Rossi, 2016].

3.1.1 The scissors mode

Among all the collective modes of a harmonically trapped Bose gas [Stringari, 1996a], the
scissors mode is sensitive to the moment of inertia of the gas [Guéry-Odelin and Stringari,
1999; Stringari, 1996b]. The scissors mode corresponds to a back-and-forth oscillation of
the long axis of the cloud in an anisotropic trap, with for example ωx < ωy. As a classical
fluid and a superfluid do not have the same moment of inertia, the frequency of this mode
is expected to change in behavior, from a dual frequency response at ω± = ωy ± ωx in
the normal phase to a single frequency regime ωs =

√
ω2
x + ω2

y in the superfluid phase.
This was evidenced for a three dimensional Bose gas held in a cigar shaped cloud [Maragò
et al., 2000]. In two dimensions, a finite temperature classical field simulation using the
projected Gross-Pitaesvkii equation confirmed that the change of frequency of the scissors
mode was related to the apparition of a superfluid fraction [Simula et al., 2008].

In order to excite specifically the scissors mode, one has to start with a cloud at rest in
a anisotropic harmonic trap and change abruptly the orientation of the trap axis [Guéry-
Odelin and Stringari, 1999]. We achieve this by using a adiabatic potential realized with
a elliptical polarization, resulting in a very oblate trap: ωz/(2π) = 1.83 kHz, ωx/(2π) =
33.8Hz, ωy/(2π) = 48.0Hz and a relatively large anisotropy: ε = (ω2

y − ω2
x)/(ω

2
y + ω2

x) =
0.34. As explained in section 1.3.1 we can change the in-plane trap axis orientation while
keeping the frequencies constant. For this study the sudden rotation was about 10◦ in
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Figure 3.1: a) and b) principle of the
scissors mode excitation: at t = 0 s
the trap axis are suddenly rotated by
a small angle θ ≃ 10◦ and the subse-
quent dynamics is recorded. c) Scissors
mode oscillations revealed by the mo-
ment ⟨xy⟩c for a pure superfluid (blue
triangles) and a thermal cloud (red
squares). The black solid lines are a
fit with an ad-hoc model.

less than 1ms. We then record the in situ density profiles after different holding times
to follow the dynamics. Finally we repeat the experiment for different temperatures
and atom numbers, leading to reduced chemical potentials µ̄ = µ/(kBT ) in the range
[0.09, 0.88]. For this trap, the superfluid transition is expected at µ̄c = 0.162.

The measurement of scissors mode frequency across the superfluid transition turned
out to be a difficult challenge. We first tried to apply principal component analysis as it
was successful in identifying the collective modes of a ultracold gas deep in the superfluid
phase. However it was not as successful when applied to a system with a significant
thermal fraction. This can be understood as follows. The scissors mode is a surface
mode of the superfluid, where the density oscillations occur essentially in the low density
region. As the principal component analysis rely on an analysis of the variance of the
whole picture, changes in the low density region have a small contribution to the total
variance and therefore are hard to reveal for small oscillations. Moreover, as we expect
different oscillations frequencies for the superfluid and the normal phase, that co-exist in
the trap, the scissors mode may overlap with several principal components.

We then tried to isolate the contributions of the high and low density parts using a fit
by a bimodal density profile: a sum of two Gaussian functions with arbitrary amplitudes,
center, sizes and angles. This approach requires twelve independent fit parameters and was
not conclusive because the fit procedure was not successful on most density profiles. To
avoid the issue of the fit model, we used a model free approach, by interpreting the density
profile as a probability distribution and computing the first moments of the distribution,
and in particular ⟨xy⟩c = ⟨xy⟩ − ⟨x⟩ ⟨y⟩ which reveals the scissors contribution [Guéry-
Odelin and Stringari, 1999]. Here the average is taken over the measured probability
distribution. This last approach allows to extract a signal from all datasets, that we fit
using an ad-hoc model [De Rossi et al., 2016]. Figure 3.1 shows the typical behavior
of ⟨xy⟩c for two realizations in the normal phase and deep in the superfluid phase, that
display the expected behavior. However in the intermediate regime µ̄ ≃ µ̄c a further
refinement in the analysis was needed.

3.1.2 Analysis of the local dynamics

Indeed we finally understood that, due to the co-existence of the superfluid and normal
phases inside the trap, the scissors response ⟨xy⟩c still mixes their contributions that are
difficult to disentangle. In fact as the moment xy gets larger far from the trap center,
the lower density in the thermal component is somehow compensated and depending on
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Figure 3.2: a) and b) results of the local
moment analysis for µ̄ = 0.73: frequen-
cies determined by the fit as a func-
tion of the annulus radius ra. The error
bars are deduced from the fit uncertain-
ties. The grey shaded areas indicate
the radii at which the fit fails, due to a
lack of signal. The vertical dashed lines
are estimates of the superfluid bound-
ary according to the equilibrium the-
ory and local density approximation. c)
Sketch of the local analysis, highlight-
ing the iso-density annulus.

the relative weights of the normal and superfluid phases the global response appears as
normal or superfluid, which is ambiguous for small superfluid fractions [De Rossi et al.,
2016].

To solve this ambiguity we introduced a local moment analysis. We restricted the anal-
ysis to a thin annulus of with 4 µm, around a rescaled radius ra =

√
(ωx/ωy)x2 + (ωy/ωx)y2,

corresponding to a iso-density curve around the trap center. Figure 3.2 gives the result of
this local moment analysis: at low rescaled radius ra ≤ 20 µm, we obtain a local oscillation
at the superfluid frequency ωs, while at higher radius ra ≥ 23 µm we find a two-frequencies
response, typical of a normal gas [De Rossi et al., 2016, 2017]. The transition between the
two regimes is in reasonable agreement with the equilibrium predictions of the Kosterlitz-
Thouless theory, within local density approximation and taking into account the 20%
population remaining in the transverse excited states.

This local moment analysis is interesting because it shows clearly that two parts of the
sample have a different dynamical response to the angular excitation, due to their different
moment of inertia. In that sense the scissors mode response allows to implement a local
dynamical analysis that somehow generalizes the local density approximation: the fluid
motion is locally determined by the superfluid fraction. The success of this approach can
probably be explained by the fact that the density oscillations of the scissors excitation
remain close to the initial iso-density curve and therefore the response of the superfluid and
normal phases are only weakly coupled. This would probably not work with a quadrupole
compression mode for example.

It is interesting to compare this study to the results of [Desbuquois et al., 2012]: using
a local excitation (a small defect moving along an iso-density) and measuring a global
observable (an increase of temperature) it was found that below a critical radius, the
response was governed by a critical angular velocity, characteristic of a superfluid. Here
we arrive at the same conclusion, using a “dual” measurement relying on a global excitation
and a local measure. What I like the most in our approach is the strong connection with
the pioneering works on superfluid Helium that evidenced the superfluid transition in
two-dimensions by the frequency change of a torque pendulum [Bishop and Reppy, 1978],
which is conceptually very similar to the study of the scissors mode.
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3.2. Melting of a vortex lattice

3.1.3 Local correlations analysis

Finally, after having understood the importance of the local analysis in the scissors dy-
namics, we tried a model free analysis of the dynamics using a local principal component
analysis [Dubessy et al., 2018]. The idea is to apply principal component analysis to the
density fluctuations of a given annulus, corresponding to a iso-density of the sample, in
the spirit of the method detailed in the previous section. The results are consistent with
the local moment analysis: for most radii one of the principal components exhibits the
typical density pattern of the scissors mode and the signal extracted using this component
is not correlated between small and large radii. This analysis does not rely on the ad-hoc
model to extract the oscillation frequencies and confirms that the scissors dynamics at
low radii is weakly correlated to the scissors dynamics at large radii.

3.2 Melting of a vortex lattice

In this section I describe another approach to evidence superfluid properties in a quasi-two
dimensional system, based on the response to rotation. I give details about the way we
induce rotation in the sample and how we control the effective rotation frequency. This
enables us to study how a large vortex lattice in two-dimensions is affected by thermal
fluctuations. Most of the work presented here is not yet published. The topic of rotating
superfluids has been the subject of a lot of experimental and theoretical works and I
will not review here all the known results, but rather introduce only what is needed to
understand our experiment. A comprehensive review of this topic can be found in [Fetter,
2009].

For reference table 3.1 lists a few experiments that addressed the physics of rotating
Bose gases and highlights their key parameters. The setup discussed in this manuscript
presents several advantages: it is highly oblate enabling the study of two-dimensional
physics, it embeds beyond harmonic trap corrections in the potential allowing the study
of very fast rotating gases and provides a long lifetime and low heating rate. The first
vortex lattices were observed in the group during the PhD thesis of [de Goër de Herve,
2018], the rotation control has been improved during the PhD thesis of [Guo, 2021] and
a systematic study of the melting carried out during the PhD thesis of [Rey, 2023].

3.2.1 Reaching the groundstate in a rotating frame

I first discuss the properties of the groundstate, at the mean field level, in a rotating
frame. The energy functional of a weakly interacting Bose gas in a rotating frame reads
[Fetter, 2009]:

E[ψ] =

∫
dr ψ∗

(
p2

2M
+ V (r) +

g3D
2

|ψ|2 −Ω ·L
)
ψ,

where p = −iℏ∇ is the momentum and L = r × p is the angular momentum. It is more
convenient to introduce the density-phase representation of the wavefunction ψ =

√
neiϕ

and write the energy as:

E[n,v] =

∫
dr

(
ℏ2|∇n|2

8Mn
+

[
M |v −Ω× r|2

2
+ V (r)− M |Ω× r|2

2
+
g3Dn

2

]
n

)
,
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Chapter 3. Rotating superfluids on a curved surface

ωr/(2π) ωz/(2π) κ Ω/ωr ωz/ωr
Reference Hz Hz ×10−4 q2D regime
MIT [2] Na 84 20 – – 0.24 Ω/ωr > 0.971

JILA [182] Rb 8.5 5.3 – ≤ 0.993 0.62 Ω/ωr > 0.782
LKB [20] Rb 64.8 11.0 62 ≤ 1.05 0.17 Ω/ωr > 0.985

Seoul [110] Na 42.5 400 – ≤ 0.89 9.4 ✓
LPL [89] Rb 33.7 356 1.5 ≤ 1.05 10.6 ✓
MIT [72] Na 88.6 250.6 – ≤ 1 2.83 ✓

Table 3.1: Selection of a few experiments that addressed the topic of inducing rotation
in a harmonically trapped Bose-Einstein condensate, presented in chronological order.
The trap geometry is characterized by radial ωr and transverse ωz frequencies. For some
experiments, an additional quartic radial correction κ is relevant, see equation (3.1). The
maximum achieved rotation frequency Ω is reported, as well as the trap oblateness ωz/ωr.
The last column indicates when the quasi-two-dimensional limit is relevant. The row
highlighted in blue corresponds to the results discussed in this chapter.

where v = (ℏ/M)∇ϕ is the velocity field associated to the phase gradient. As a con-
sequence the energy can be seen as the sum of four terms: the kinetic energy cost of
bending the wavefunction (related to the so-called quantum pressure), the kinetic energy
with respect to the rotating frame, the potential energy lowered by the centrifugal term
and the interaction energy. In order to minimize the energy it would be natural to require
that the velocity field v behaves as the one of a rigid body Ω × r. Evidently it is not
possible as v is irrotational (∇× v = 0), while ∇× (Ω× r) = 2Ω.

As is well known this frustration leads to the apparition of quantized vortices in the
wavefunction: localized singularities corresponding to a vanishing density and around
which the circulation of the velocity is exactly h/M , one quantum of circulation. While
the behavior at small rotation frequency, with a few vortices is very peculiar [Madison
et al., 2000], in the large rotation frequency limit, when many vortices are present, they
tend to arrange in a regular triangular lattice with constant vortex density (per unit area
in the plane normal to the rotation axis) nv = MΩ/(πℏ) [Abo-Shaeer et al., 2001] and
the coarse grained velocity field mimics the one of a solid body [Fetter, 2009]. I will refer
to this phenomenon as the diffuse vorticity limit. This vortex lattice supports elastic
deformations known as Tkachenko modes [Coddington et al., 2003; Tkachenko, 1966].

These results apply both for three-dimensional and two-dimensional systems. In three
dimensions, the vortex are lines of vanishing density, parallel to the rotation axis that can
bend longitudinally, giving rise to a family of modes, known as Kelvin modes [Chevy and
Stringari, 2003]. In two dimensions the vortices are considered as point-like object, as
the bending of the vortex line is suppressed, provided that the trap is sufficiently oblate
ωz/ωr > 8 [Rooney et al., 2011], and only the Tkachenko modes are present. Consider-
ing that the centrifugal term weakens the confinement in the plane perpendicular to the
rotation axis a Bose gas in a rotating frame naturally enters the quasi-two-dimensional
crossover as the rotation frequency increases [Coddington et al., 2003; Schweikhard et al.,
2004]. This results in highly oblate geometries even for modest vertical trapping frequen-
cies.

To induce rotation in our experiment we rotate the trap axis at constant frequency,
turning on the anisotropy on a fast time scale, following the approach of [Madison et al.,
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Figure 3.3: a) Horizontal absorption image of a rotating Bose gas after a 23ms time-of-
flight, with one dimensional integrated density profile showing a bi-modal density profile.
Sizes of the thermal cloud b) and of the condensate c) as a function of the rf knife fre-
quency. In b) the horizontal and vertical sizes are interpreted as a temperature, assuming
that the time-of-flight density distribution reflects the initial velocity distribution.

2001]. This results in a dynamical instability [Sinha and Castin, 2001] that induces a
large deformation of the condensate that eventually relaxes to a rotationally symmetric
state containing a large vortex lattice [Lobo et al., 2004]. This process requires a form
of thermalization that is provided in the experiment by a rf knife truncating the trap
depth. To evidence the rotation we measure the time-of-flight expansion of the gas after
the stirring phase: we typically observe a fast ballistic horizontal expansion as expected in
the diffuse vorticity limit. We may also look at the in-situ density profile and observe how
the cloud expands due to the centrifugal force, without being able to resolve the vortex
lattice, due to the relatively low imaging resolution. However we observe the vortex lattice
for long time of flight, using vertical imaging, thanks to the magnification of all length
scales during the expansion.

Figure 3.3a) shows a typical density profile of a fast rotating Bose gas after time-of-
flight, adjusted with a bimodal density profile, using an anisotropic Gaussian to fit the
thermal cloud and the hybrid ansatz of equation (2.13) to model the superfluid. From
the fit we extract the rms sizes of the thermal cloud, that reflect the widths of the initial
velocity distribution and hence give an estimation of the temperature, and the size of the
superfluid, that undergoes a fast horizontal ballistic expansion due to the rotation. In
figure 3.3b) and c) I report the variation of those sizes with the rf knife frequency applied
during the stirring phase. This analysis shows a few interesting features. The thermal
cloud horizontal size is larger than the vertical one, which means that the thermal cloud is
also rotating and that the temperature should be estimated from the vertical size: for low
rf knife frequency ω′/(2π) ≤ 60 kHz it saturates to a value T ≃ 18 nK. The vertical size
of the superfluid part is almost constant and compatible with the expected size for the
groundstate of the vertical harmonic oscillator (after expansion): the superfluid is in the
quasi two-dimensional regime. Finally the horizontal size of the superfluid part increases
as ω′ decreases: this can be explained only if the evaporation induces an increase of
rotation.

To achieve this fast rotation regime we carefully tune the rf polarization to obtain
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Chapter 3. Rotating superfluids on a curved surface

a very symmetric trap, this is done by maximizing the superfluid part horizontal size
in time-of-flight after several seconds of waiting time in the trap. We observe that this
size decreases when the rf polarization is not well tuned. We interpret this as a slowing
down of the rotation due to a residual static anisotropy [Guéry-Odelin, 2000]: the angular
momentum decreases and the clouds evolve towards its equilibrium state in the laboratory
frame.

3.2.2 Spin-up evaporation mechanism

To investigate this increase in the rotation frequency with the trap depth, we introduce
a post-stirring evaporation ramp and measure the effective rotation rate of the cloud,
deduced from its size and atom number, as a function of the final knife frequency. We use
a low frequency rf signal added to the vertical axis coil (C3 on figure 1.3) to truncate the
adiabatic potential depth. We thus expect that the rf knife does not break the rotational
invariance and that the angular momentum is conserved. Spin-up evaporation has already
been observed [Schweikhard et al., 2004], it is a direct consequence of the conservation
of angular momentum: as the atoms are removed, the size of the cloud shrinks which
leads to an increase of the rotation frequency. However, due to the weak dependence of
the cloud size in atom number, a large atom loss is needed to increase significantly the
rotation frequency.

In the adiabatic potential, this process is much more efficient because the rf knife
evaporate selectively atoms with low angular momentum. Indeed, as the local rf coupling
on the resonant surface is inhomogeneous, the trap depth is reduced for atoms that are
closer to the rotation axis. This can be qualitatively understood using the simple approx-
imation of the potential on the resonant surface (2.20): the trap depth is approximately
ℏ(ω′ − Ω0 × (ρ/(2r0))

2) and increases as ρ increases.
This property of the adiabatic potential is extremely interesting to control the effective

rotation frequency and works surprisingly well, as illustrated in figure 3.4. We have
systematically tested the effect of a post-stirring evaporation ramp, from 80 kHz to 60 kHz,
for a wide range of stirring anisotropies and frequencies, as reported on figure 3.4c). We
find that it enables a fine tuning of the effective rotation frequency Ω from ωr/2 up to
∼ ωr. In addition, the final temperature is almost constant, set by the final rf knife
frequency and of the order of T = 18 nK. This temperature is of the order of ℏωz/kB: we
therefore expect that all the rotating clouds are well in the quasi two-dimensional regime.

3.2.3 Hints of a melting transition

I conclude this section by presenting preliminary results on the melting of the vortex lat-
tice in a fast two-dimensional rotating Bose gas induced by thermal fluctuations. This is
an interesting phenomenon as it allows to test the universal scenario of dislocation medi-
ated melting of a two-dimensional crystal, as proposed by Kosterlitz, Thouless, Halperin,
Nelson and Young (KTHNY), see [Gasser et al., 2010] for a review. The basic idea is that
the crystal to liquid phase transition in two dimensions occurs through a intermediate
hexatic phase following two successive Kosterlitz-Thouless like transitions, corresponding
to the unbinding of first dislocations and then disclinations.

For a vortex lattice in a fast rotating Bose gas, [Gifford and Baym, 2008] derived an
implicit equation: Ds(Tm) = 16π

√
3 ≃ 87, that gives an upper bound for the melting

temperature Tm, as a criterion on the two-dimensional superfluid phase-space density Ds.
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Figure 3.4: a) Sketch of the adiabatic potential in a rotating frame in which the cloud
expands under the centrifugal potential. Due to the inhomogeneous coupling the apparent
depth ℏ(ω′−Ω(r)) is not constant on the shell surface. b) Increase of the effective rotation
frequency as a function of the final knife frequency, the dashed red line indicates the
stirring frequency for reference. c) Map of the achievable effective rotation frequency as a
function of the stirring frequency Ωrot and trap anisotropy ε, for a post stirring evaporation
ramp from 80 kHz to 60 kHz.

Surprisingly this criterion does not depend explicitly on the rotation frequency Ω, however
the superfluid density itself depends explicitly on Ω as it decreases when Ω increases. Using
the trap parameters and the two-dimensional prediction for the superfluid density gives
the upper bound Tm ≤ 0.3TKT. As the trapped superfluid is inhomogeneous this upper
bound must be understood as follows: when T approaches 0.3TKT the vortex lattice is
expected to fully melt, while at lower temperature the vortex lattice should survive at the
trap center, where the density is the highest.

Figure 3.5 reports preliminary results on the vortex lattice melting in a fast rotating
quasi two-dimensional Bose gas. From top view time-of-flight pictures, we detect the
vortex lattice, measure the atom number and the effective rotation frequency Ω. Using
the knowledge of the trap geometry and the fact that the temperature of the sample is
T = 18 nK we estimate the superfluid transition temperature TKT for each realization.
By increasing the rotation frequency we vary the dimensionless temperature τ = T/TKT

and observe a trace of the vortex lattice melting in the loss of contrast in the vortex pair
distance histogram as τ approaches 0.3, in reasonable agreement with the above computed
bound.

To get a more quantitative analysis, and actually test the KTHNY scenario, it would
be interesting to study other order parameters: the translational order, the orientational
order and the density of defects (dislocations and disclinations). Currently the data we
have are not completely conclusive as finite size effects (the vortex lattice is not infinite)
seem to play a significant role. In particular we expect that even a zero-temperature
rotating superfluid may exhibit dislocations as the triangular array of vortices is frustrated
by the circular superfluid edge, see for example Figure 3.6. To probe more precisely this
effect it would be interesting to observe the melting transition at fixed rotation frequency
by varying the temperature. This is in principle doable, but requires more work as a
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Figure 3.5: Investigation of the melting of a vortex lattice in a fast rotating Bose gas. a)
Time-of-flight absorption picture of the density of a fast rotating Bose gas. the dashed
red circle indicates the Thomas-Fermi radius. b) Detected vortex lattice using a simple
algorithm [Rakonjac et al., 2016]: each dark patch corresponds to a low density region
in the picture. c) Histogram of the vortex pair distance computed from the lattice b),
exhibiting regular peaks, characteristic of translational order. The inset displays the
Fourier transform of the original picture, showing a hexagonal structure corresponding to
the reciprocal lattice. d) Changes of the histogram structure as the rotation frequency
increases or equivalently the reduced temperature τ = T/TKT(Ω) increases.

calibration of the effective rotation frequency for different temperatures (i.e. final rf knife
frequency), see figure 3.4c), will be needed.

3.3 Fast rotating superfluids

Finally I discuss in this section the very fast rotation regime, when Ω approaches ωr: in this
limit the Hamiltonian of a two-dimensional atomic gas acquires a Landau level structure,
the one-body energy spectrum being made of many degenerate states, separated by energy
gaps of size 2ℏωr, see [Cooper, 2008] for a review. This stimulated lots of theoretical
and experimental works to investigate the quantum Hall effect with ultracold atoms.
Unfortunately the strongly correlated regime is out of reach in most experiments as it
can be realized only with extremely low atom numbers [Roussou et al., 2019]. However
reaching the fast rotation regime in a shell-shaped trap leads to interesting effects, as
reported in the PhD theses of [de Goër de Herve, 2018] and [Guo, 2021].

3.3.1 The giant vortex transition

As |Ω| → ωr the centrifugal term reduces the radial harmonic trap potential and the
next order terms in the potential become important. For the shell trap, the effect can be
estimated from the simple surface potential (2.20) in the rotating frame:

Vres(ρ) ≃ V0 +
Mω2

r

2
ρ2
(
1− Ω2

ω2
r

+ κ
ρ2

a2r

)
, (3.1)
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Figure 3.6: Gross-Pitaevskii zero temperature simulation of the giant-vortex transition
with increasing rotation frequency Ω, for our experimental parameters with a) N = 2×104

and b) N = 400 atoms. The red (blue) dashed circle indicates the outer (inner) Thomas-
Fermi radius, along which the circulation of the velocity field is evaluated. The pure giant
vortex state corresponds to equal inner and outer circulations Cint = Cext, otherwise the
difference between the two give the number of vortices in the bulk of the ring. Note that
the vortex lattice is frustrated by the boundaries and that other peculiar states can be
achieved, as the “vortex necklace”.

where V0 is a constant offset, ar =
√

ℏ/(Mωr) is the natural length scale of the trap
harmonic potential and κ ≃ (ar/(2r0))

2 ≃ 1.5 × 10−4 is the dimensionless amplitude of
the quartic term.

This form of harmonic plus quartic potential in a rotating frame was previously in-
troduced in the context of fast rotating Bose gases to help stabilize the gas and real-
ize the limit Ω = ωr [Bretin et al., 2004]. It was studied theoretically and a transi-
tion to a giant vortex state was predicted [Fetter, 2001; Fetter et al., 2005; Kasamatsu
et al., 2002; Kavoulakis and Baym, 2003; Lundh, 2002], but never observed. This tran-
sition occurs above a critical rotation frequency Ωh > ωr, beyond which it becomes
more favorable to create a multiply quantized vortex at the center of the trap. At
the single particle level, the minimum of the potential (3.1) occurs at a finite radius
ρm = ar

√
((Ω/ωr)2 − 1)/(2κ), as soon as Ω > ωr, however the creation of a multiply

charged vortex in the center requires that this potential minimum exceeds the chemical
potential: µ < ℏωr/(8κ)× ((Ωh/ωr)

2 − 1)
2. For a two-dimensional system in the Thomas-

Fermi limit, the normalization of the wavefunction gives the explicit formula [Fetter et al.,
2005]:

Ωh =

√
1 +

(
12κ2g̃N

π

)1/3

.

Numerical simulations using Gross-Pitaevskii equation, see Figure 3.6 show that, for our
trap parameters, a zero temperature superfluid contains a large vortex lattice with very
flat density for Ω = ωr, that remain present but with a density depletion for ωr < Ω < Ωh

and finally contains a vortex lattice and a multiply charged vortex in the center for Ω > Ωh.
Eventually for a larger rotation frequency, Ω > Ωgv all the vortices coalesce at the trap
center and a giant vortex state is obtained, characterized by a pure two-dimensional
circulation state: ψ(ρ, ϕ) =

√
n(ρ)eimϕ, with a large angular momentum m. Equivalently

the transition can be observed at fixed rotation frequency Ω > ωr, by decreasing the atom
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Figure 3.7: Sketch of the experimental sequence leading to the formation of a dynamical
ring and in situ images of the atomic density distribution. The leftmost image shows the
initial density distribution before stirring, only 10% of the atoms are imaged. As the
rotation frequency increases, the peak density in the pictures decreases and we use two
different gray level scales for images taken before and after t = 25 s, for which the darkest
pixels correspond to densities of 50 µm−2 and 20 µm−2 respectively.

number or tuning the quartic term.
Thanks to our fine control of the rotation frequency, we managed to increase Ω beyond

Ωh and observe the formation of a dynamical ring of atoms, sustained by its own rotation
[Guo et al., 2020]. Figure 3.7 shows the creation of a dynamical ring using the spin-up
evaporation mechanism, where the increase of rotation frequency results in a full depletion
at the trap center. The ring shape is robust to atom losses and persists for more than
one minute. We were not able to test precisely the transition to a multiply charged
central vortex scenario because, as reported in section 3.2.3, thermal fluctuations induce
a melting of the vortex lattice to a vortex liquid state, and for fast rotations, the density
drops during the time-of-flight expansion thus reducing a lot the signal to noise ratio.
Both effects tend to hinder the detection of the vortices in our pictures.

3.3.2 Observation of a supersonic superfluid flow

We observe that the in situ measured density profiles are extremely well reproduced by zero
temperature Gross-Pitaevskii simulations, convoluted by the finite imaging resolution.
Using simple Thomas-Fermi profile estimates, we extract the chemical potential µ and
the radius corresponding to the peak density rpeak. Interestingly, we find that the speed
of sound deduced from the chemical potential: cs =

√
µ/M is much smaller than the

fluid linear azimuthal velocity: v = Ωrpeak in the laboratory frame. In other words
the flow is supersonic, with estimated Mach numbers (v/cs) between 11 and 18, for the
fastest rotation [Guo et al., 2020]. A supersonic flow has also been realized in a circular
atomic waveguide, based on time-averaged adiabatic potentials [Pandey et al., 2019]. To
verify this estimate we performed a time-of-flight expansion measurement, as reported in
Figure 3.8, providing a direct measurement of the azimuthal velocity, in good agreement
with the in situ Thomas-Fermi estimation. The typical azimuthal velocity is of the order
of 6− 7mm/s, while the chemical potential is below 100Hz, resulting in a speed of sound
typically below 0.6mm/s.

The fact that the in situ profiles are well reproduced by the mean field theory is an in-
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direct proof that the ultracold atom gas is still deep in the superfluid regime. To get more
insight we studied the variations of the collective modes frequencies of the cloud as the
rotation frequency is increased. In particular we measured the quadrupole mode frequen-
cies, using a spectroscopic measurement: after having prepared a rotating sample at the
desired rotation frequency Ω, we turn on a weak trap anisotropy ε ≃ 0.01 rotating at a fre-
quency Ωexc. By varying Ωexc we observe resonances corresponding to the two quadrupole
modes Ωm=±2, as expected. At low rotation frequency, one resonance occurs at positive
frequency (ie for a co-rotating excitation) corresponding to the m = +2 quadrupole mode,
while the other one is at negative frequency (counter-rotating excitation), corresponding
to the m = −2 quadrupole mode. We checked that Ωm=2−Ωm=−2 = 2Ω, as expected. For
fast rotations Ω ≥ ωr the spectrum is affected by the quartic term [Cozzini, 2006; Cozzini
et al., 2005]: curiously we find that it becomes very hard to excite the m = +2 mode,
while the m = −2 mode acquires a positive frequency, i.e. becomes co-rotating. This is
not expected from the Bogoliubov analysis of a superfluid in a rotating harmonic plus
quartic two-dimensional potential [Cozzini, 2006; Cozzini et al., 2005; Guo et al., 2020].
Further experiments are needed to solve this puzzle, and it may be necessary to study
other modes in the vicinity of the dynamical ring transition, as for example the monopole
mode.

3.3.3 Landau levels picture

Finally it is interesting to discuss in this context the Landau level picture. The Hamilto-
nian of a harmonic oscillator, with radial symmetry, in a frame rotating around the z axis
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Figure 3.10: Landau level picture (blue
dashed lines), the levels are classified by
their angular momentum quantum number
m, and approximate realizations: best case
reported by the JILA group at Ω = 0.993ωr
[Schweikhard et al., 2004] (magenta lines),
the LPL adiabatic potential for Ω = 1.02ωr
(red symbols) taking into account the quar-
tic term. For both cases the number of
states in the approximate LLL is ∼ 290.

at angular frequency Ω is conveniently written using the â± = (âx ∓ iây)/
√
2 operators,

where âα is the standard annihilation operator of the harmonic oscillator in direction
α = x, y, z, resulting in [Fetter, 2009]:

Ĥ = ℏωr(â†+â+ + â†−â− + 1)− ℏΩ(â†+â+ − â†−â−) + ℏωz
(
â†zâz +

1

2

)
.

The energy spectrum is thus very simple, characterized by a set of three quantum numbers
(n+, n−, nz): En+,n−,nz = ℏ(ωr−Ω)n++ℏ(ωr+Ω)n−+ℏωznz+E0 where E0 = ℏωr+ℏωz/2
is the zero point energy. In the limit Ω → ωr the spectrum is made of degenerate manifolds
spanned by the integer n+ and indexed by the two integers (n−, nz). In particular the
groundstate manifold is separated from the others by a energy gap min(2ℏωr, ℏωz), and
is spanned by states of the form:

ψLLL(r) = A
∑
m

cmρ
meimϕe−

ρ2

2ar e
− 2z2

a2z

emphasizing the similarity with the fractional quantum Hall effect for two-dimensional
electrons subjected to a strong magnetic field [Fetter, 2009; Watanabe et al., 2004].

To study the influence of the weak quartic term considered in equation (3.1), on
this energy spectrum, it is convenient to introduce the quantum numbers n = n+ + n−
and m = n+ − n− that correspond to the eigenvalues of the radial energy and angular
momentum, respectively. As the quartic term ℏωr/2 × κ(ρ/ar)

4 commutes with L̂z, it
conserves the m quantum number but mixes states with different n values. This results
in a bended Landau level picture, as reported in Figure 3.10, for which the manifolds are
still separated by a 2ℏωr gap. This property is very convenient to build a exact Laguerre-
Gauss quadrature to solve the spectral form of the Gross-Pitaevskii equation at zero (2.7)
or finite (2.10) temperature, following the approach of [Wright et al., 2008].

As mentioned above, during the spin up evaporation the chemical potential decreases,
because the atomic density decreases as the gas expands, and eventually becomes smaller
than 2ℏωr. In this situation we realize a two-dimensional superfluid in the lowest Landau
level, and the emergence of the dynamical ring can be seen at the mean field level as the
condensation in the lowest energy states of Figure 3.10, with large angular momentum.
As typically kBT ≃ ℏωz ≃ 5×2ℏωr the thermal cloud populates several Landau levels for
these experiments.

70



3.3. Fast rotating superfluids

Conclusion
In this chapter I described a series of experiments aiming at probing the superfluid prop-
erties of two-dimensional weakly interacting Bose gases by studying their response to
rotation. I have first reported a direct, in situ, measurement of the Kosterlitz-Thouless
transition in a trapped gas, evidenced by the shift of the scissors mode collective excitation
frequency across the normal to superfluid transition. This is enabled by a local analysis of
the dynamics, showing that the inner part of the cloud is superfluid while the outer part
is in the normal phase. I have then discussed two-dimensional physics in a rotating frame
and in particular the melting of a two-dimensional vortex lattice, induced by thermal
fluctuations. This study is made possible by a fine control of the effective rotation rate
of the atomic cloud, in a quasi two-dimensional geometry, in which the vortices behave
as point like objects. As mentioned before, this requires only a moderately oblate trap
ωz/ωr > 8 which is easily achieved in the shell trap. In fact reducing this ratio from 40
to 10.6, by mainly decreasing the magnetic gradient, helps to increase the lifetime and
limit the heating rate, which is crucial to achieve the fast rotation regime, given the long
thermalization time of the vortex lattice. Finally I have shown that the shell potential in
a rotating frame enables the study of the giant vortex transition, realizing a supersonic
flow, a new regime for fast rotating superfluids.

One interesting feature of the shell trap that we understood while doing these exper-
iments if the fact that the rf-knife allows to control the temperature and finely tune the
effective rotation frequency, thanks to a spin-up evaporation mechanism. This enabled
a preliminary study of the two-dimensional vortex lattice melting transition, at constant
temperature and almost constant atom number, where the transition is driven by the
fact that when the rotation rate increases, the cloud expands and thus the phase-space
density (or the critical temperature) decrease. Unfortunately, we work with a relatively
small system in which finite size effects cannot be ignored and must be accounted for,
when trying to compare with theoretical predictions derived for infinite size systems at
the thermodynamic limit. To do this properly we may need to perform finite tempera-
ture classical field simulations in a rotating frame, adapting the method of [Blakie, 2008;
Wright et al., 2008] to fast rotations. Another possibility would be to cross the melting
transition at constant rotation frequency by varying the temperature and atom number,
which is in principle doable. This would simplify the interpretation of the measurements,
as I expect in this case that the finite size corrections will remain constant (at least to
leading order).

Another research direction opened by these works in the study of a fast rotating Bose
gas in the lowest Landau level, that we can achieve by lowering the rf-knife and hence
the temperature and atom number. Here the idea would be to study the mean-field
physics in the lowest Landau level, both theoretically and experimentally. In particular
it would be interesting to investigate the collective modes in this regime and test if it can
account for the deviation of the measurements from the hydrodynamic Thomas-Fermi
predictions observed for the quadrupole mode. Although the study of many-body physics
in this system is practically out of reach [Roussou et al., 2019], recent experiments at MIT
showed that interesting dynamics could be investigated in the mean-field lowest Landau
level [Fletcher et al., 2021; Mukherjee et al., 2022]. Taking advantage of the tunability of
the dressed potential to implement rotation schemes it seems feasible to address similar
topics in our experiment.
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Chapter 4
A superfluid in a ring trap

This last chapter reports my contributions to the study of a superfluid trapped in ring
shaped potential, realizing a circular atomic waveguide. This project was initiated by
Hélène Perrin before I joined the group, following the proposal [Morizot et al., 2006],
and was carried out in the experimental setup during the PhD theses of [De Rossi, 2016],
[de Goër de Herve, 2018] and [Guo, 2021] under the supervision of Laurent Longchambon,
in parallel of the experiments reported in the previous chapters. This project was partly
funded by a ANR grant SuperRing (ANR-15-CE30-0012), during the years 2016–2018,
in collaboration with the group of Anna Minguzzi in Grenoble. This has been for me a
unique opportunity to develop my skills in theoretical modeling and numerical simulations
of low-dimensional systems.
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Chapter 4. A superfluid in a ring trap

4.1 Context: the emergence of atomtronics

This part of the manuscript is an illustration of the concept of quantum simulation [Bloch
et al., 2012]: using the high degree of tunability of ultracold atom experiments it is possible
to emulate a specific Hamiltonian relevant for a particular problem, in a clean, controllable
environment. Although the simulation of a real-life complex condensed matter system, as
a high-Tc superconductor material, is still out of reach, ultracold atom platforms enable
the detailed study of the building blocks of model Hamiltonian that try to capture the
underlying physics at the microscopic level. The strength of quantum simulation lies
in the fact that most of these simple models are complex enough to be extremely hard
to solve using analytical or numerical methods: the analog experiment thus provides a
crucial input through the measurement outcomes.

Thanks to the possibility of designing more and more complex trap shapes, a subfield
of quantum simulation, now commonly called atomtronics, targets the study of superfluid
transport in atomic circuits, as an analogy of the coherent motion of electrons in super-
conducting circuits. This is motivated by the opportunity of extending the possibilities of
atom interferometry and the study of fundamental effects in the coherent manipulation
of a matter wave [Amico et al., 2017; Ryu and Boshier, 2015].

4.1.1 Atomic waveguides

For more than fifteen years several research groups have investigated the persistent flows
of ultracold atoms in the most basic atom circuit: the ring trap geometry [Gupta et al.,
2005], from the first observation of persistent currents [Ryu et al., 2007], the realization of
a loop with a weak link [Ramanathan et al., 2011; Wright et al., 2013b] allowing to drive
phase-slips [Wright et al., 2013a], the investigation of the stability of persistent currents
[Beattie et al., 2013; Moulder et al., 2012] and the recent achievement of persistent currents
in Fermionic systems [Cai et al., 2022; Del Pace et al., 2022]. Further trap shaping enable
precise interferometric measurements of the circulation state [Corman et al., 2014; Eckel
et al., 2014a], while the fine control of the dynamics enable the study of the so-called
atomtronic SQUID analog [Eckel et al., 2014b; Jendrzejewski et al., 2014; Kumar et al.,
2016; Ryu et al., 2020; Wang et al., 2015], including the effects of finite temperature
[Kumar et al., 2017].

I contributed to this topic by elucidating the stability of a persistent current in a ring
shaped waveguide, using the Bogoliubov-De Gennes stability analysis [Dubessy et al.,
2012a]. We evidenced the role of surface modes in the definition of the critical velocity,
which can be captured with a simple analytical model [Anglin, 2001]. For a ring there
are two surfaces, corresponding to the inner and outer radii of the superfluid and we have
shown that the instability triggers first at the inner surface. The predictions of our model
are in excellent agreement with experiments [Moulder et al., 2012].

Later, we proposed a protocol to imprint a persistent current onto a ring-shaped
atomic waveguide, by directly manipulating the phase of the superfluid wavefunction
[Kumar et al., 2018]. The idea is to shape a laser beam with a specific intensity profile
and to use the light shift induced by this beam to create a gradient of the superfluid phase
along the ring. One advantage of this protocol is that it can be applied to atoms trapped
in a adiabatic potential, whereas other protocols (such as the one used in [Moulder et al.,
2012]) may fail. We have shown using numerical GPE simulations that this process was
efficient to produce a flow with a well defined circulation. We also demonstrated that the
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desired intensity profile can be produced with a spatial light modulator and optimized
using a simple feed-forward algorithm [Kumar et al., 2018]. We have not implemented
this method onto the experiment yet, but it was recently used to create circulating states
in a Fermionic ring [Del Pace et al., 2022].

4.1.2 Adiabatic potentials for atomtronics

While most implementations of ring shaped traps rely on optical dipole traps, adiabatic
potentials offer an interesting alternative. The idea is to use the shell trap to define a
rotationally invariant ellipsoidal trap surface and to hold the atoms at the equator of
the shell using an additional optical trap, using a very anisotropic beam, tightly focused
in the vertical direction [Heathcote et al., 2008; de Goër de Herve et al., 2021; Morizot
et al., 2006]. One advantage of this technique is that the vertical and radial confinements
are independently tunable: the radius of the trap and radial trapping frequency are
determined by the static magnetic and rf dressing fields properties, while the vertical
confinement is controlled by the optical dipole trap parameters. In principle this allows
to change the ring size easily and to reach the regime of strong confinement both in the
radial and vertical directions, which enables the study of ring traps in the quasi one-
dimensional limit.

In practice, at least in our experiment, this ring geometry is extremely hard to achieve
[De Rossi, 2016; Guo, 2021; de Goër de Herve, 2018]: small imperfections in the optical
dipole trap beam introduce uncontrolled disorder and induce the accumulation of atoms
at specific positions, breaking the rotational invariance and higher power in the optical
dipole trap induces heating and atom losses. With the current setup, these effects can
be mitigated by realizing smaller rings with lower laser power, thus limiting the vertical
confinement. To facilitate the realization of a ring trap with this technique it seems
necessary to upgrade the glass cell to reach a better beam quality.

Another very promising alternative would be to use time-averaged adiabatic potentials
[Gildemeister et al., 2010; Lesanovsky and von Klitzing, 2007] that enable the creation of
very smooth and tunable ring shaped atomic waveguides [Pandey et al., 2019; Sherlock
et al., 2011]. As this traps are made by a combination of magnetic and rf fields they benefit
from a long lifetime and low heating rate, they are highly tunable and in particular can
be dynamically controlled to impart rotation [Gildemeister et al., 2012; Pandey et al.,
2019] or implement interferometry protocols [Navez et al., 2016]. However time averaging
typically reduces the confinement strength, thus it may not be the best strategy to reach
the low dimensional regime.

Finally, as demonstrated in section 2.4 gravity compensation in the shell potential also
allows to create a ring trap geometry, close to the equator, where the ring is stabilized by
the inhomogeneous transverse confinement [Guo et al., 2022]. There are certainly many
interesting ideas to explore along this lines by exploiting the available toolbox of adiabatic
potentials, including multiple dressing [Bentine et al., 2017] to realize double shell traps
[Harte et al., 2018] or the realization of mixtures [Bentine et al., 2020], that could be
extended to the ring geometry.

4.1.3 Painted potentials

It is worth mentioning here the success of all optical trapping techniques, see [Gauthier
et al., 2021] for a recent review, in the context of atomtronics. Building up on the idea of
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realizing two-dimensional box trap potentials [Chomaz et al., 2015], that can be shaped
using spatial light modulators or digital micro-mirror devices to almost arbitrary pattern
[Corman, 2016; Corman et al., 2014; Del Pace et al., 2022; Saint-Jalm et al., 2019]. It
enables the design of narrow channels geometries, thus realizing for example simple circuits
connecting two reservoirs [Eckel et al., 2016]. Alternatively, by time averaging the fast
modulation of the position of a red detuned dipole beam it is possible to paint complex
waveguide shapes [Gauthier et al., 2021; Ryu and Boshier, 2015]. All these techniques
seem very promising to implement small atomtronics circuits. In contrast to magnetic
trapping techniques [Cassettari et al., 2000; Key et al., 2000; Müller et al., 1999] they offer
more flexibility as the circuit can be changed simply by reprogramming a light shaping
tool.

4.2 Tools to describe one-dimensional superfluids

As my contribution to this topic is mainly theoretical, I give here a few details on the
models and tools I used. In the framework of the ANR SuperRing we focused on the
one-dimensional limit of the circular atomic waveguide. I performed simulations in the
weakly-interacting mean-field limit, well captured by the Gross-Pitaevskii equation, while
our collaborators in Grenoble studied the strongly-interacting many-body regime, known
as the Tonks-Girardeau limit, using the Bose-Fermi mapping technique1 [Girardeau, 1960].
One interest of working with one-dimensional bosons in a ring trap is that it realizes the
Lieb-Liniger model with periodic boundary conditions, for which the many-body ground-
state is known exactly [Lieb and Liniger, 1963], as well as the elementary excitation
spectrum [Lieb, 1963]. This can be seen as a consequence of the integrability of the sys-
tem. Interestingly the mean-field limit of this model, the one-dimensional Gross-Pitaevskii
equation, is also exactly integrable, in the sense of partial differential equations, which
gives access to a analytical toolbox to study this model [Ablowitz and Segur, 1981]. To
connect with the LPL experiment, we considered only the case of repulsive interatomic
interactions.

4.2.1 The Gross-Pitaevskii equation on a line

Assuming a tight radial confinement in (2.6), allows to factorize the wavefunction ψ(r, t) =
ψ(z, t)e−ρ

2/(2a2r)/(
√
πar) and write an effective one-dimensional equation:

iℏ
∂

∂t
ψ(z, t) =

(
− ℏ2

2M

∂2

∂z2
+ V (z, t)− µ1D + g1D|ψ(z, t)|2

)
ψ(z, t), (4.1)

where µ1D = µ + ℏωr is the one-dimensional chemical potential, g1D = g3D/(2πa
2
r) =

2ℏωras, and V (z, t) is a perturbation potential, possibly time dependent. In the context
of a ring potential, we impose periodic boundary conditions ψ(z + L, t) = ψ(z, t) and a
normalization of the wavefunction:

∫ L
0
dz |ψ(z, t)|2 = N . In the absence of the poten-

tial V (z, t) equation (4.1) is integrable, i.e. has infinitely many conserved quantities2,
among which the atom number N , the momentum P = −iℏ

∫ L
0
dz ψ(z, t)∗ ∂

∂z
ψ(z, t) and

1In short, hardcore bosons are very similar to free fermions: they avoid each other. In one dimension
it leads to the same kind of many-body wave function, up to symmetrization properties.

2In the inhomogeneous case, N is always conserved, and E is conserved only if the potential is static.
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the energy:

E =

∫ L

0

dz

(
ℏ2

2M

∣∣∣∣∂ψ(z, t)∂z

∣∣∣∣2 + g1D
2

|ψ(z, t)|4
)
.

The mapping to ring coordinates is obtained through the substitution: z → 2πr0ϕ, where
r0 is the ring radius, and ϕ is the azimuthal angle.

The groundstate of equation (4.1) corresponds to a uniform density |ψ0|2 = n0 =
N/L, which allows to define characteristic velocity cs = (ℏ/M)

√
Mg1Dn0/ℏ2 and length

scale ξ =
√
ℏ2/(2Mg1Dn0), corresponding respectively to the speed of sound and healing

length. More generally the stationary solutions of (4.1) can be expressed in terms of
elliptic functions [Carr et al., 2000]. Another family of analytical solutions can be found
in the form of gray solitons: density dips that propagate at constant velocity without
deformations [Ablowitz and Segur, 1981]. Using perturbation theory it is possible to show
that the small amplitude Bogoliubov excitations correspond to very shallow gray solitons
[Tsuzuki, 1971]. On the contrary, a dark, very deep, soliton is a topolgical excitation,
carrying a π phase jump, that is associated to a opposite background current in a ring.

To take into account the perturbation potential, it is in general necessary to use
numerical simulations and introduce a discretized representation of equation (4.1) that
reflects as much as possible the properties of the initial model. In this context it is
useful to use the PGPE formalism (2.7), adapted to a one-dimensional ring geometry,
using the basis of plane waves: ϕk(z) = eikz/

√
L, where k ∈ (2π/L) × Z. Expanding

ψ(z, t) =
∑

k∈C ck(t)ϕk(z), where the coherent region is C = {|k| < kcut}, equation (4.1)
reads:

iℏċk(t) =
(
ℏ2k2

2M
− µ1D

)
ck(t) +

∫ L

0

dz ϕk(z)
∗ (V (z) + g1D|ψ(z, t)|2

)
ψ(z, t). (4.2)

Taking advantage of the similarity between the plane wave expansion and the Fourier series
representation of a periodic function, the PGPE equation can be simulated efficiently using
a discrete grid k ∈ {−kmax, ..., kmax}, with kmax = 3kcut/2. The extra wavevectors above
kcut are necessary to avoid aliasing in the evaluation of the non linear term, and require
the explicit use of a projector onto the coherent region at each direct Fourier transform.
This is absolutely necessary when dealing with far from equilibrium states [Polo et al.,
2019; Saha and Dubessy, 2021].

4.2.2 Generalized hydrodynamics

In 2016, a breakthrough in the study of out-of-equilibrium one dimensional Bose gases
was achieved in the discovery of the generalized hydrodynamics (GHD) equation [Bertini
et al., 2016; Castro-Alvaredo et al., 2016] that provides an exact description of the large
scale dynamics at arbitrary interaction strength. Importantly for me it is a model that
can be solved on a laptop computer, without using a complicated formalism, and it
provides a conceptual framework that helps to understand out-of-equilibrium integrable
one-dimensional dynamics [Dubail, 2016]. A comprehensive review of the recent devel-
opments triggered by this discovery can be found in [Bouchoule and Dubail, 2022]. I
contributed to this topic by extending the model to the one-dimensional Bose gas in a
box trap, relevant for the experiments [Dubessy et al., 2021].

I introduce here the GHD equations based on simple ideas, without rigorous justifi-
cation, that I hope still conveys the main ideas beyond this theory. Consider the generic
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hydrodynamic approach as sketched in figure 4.1: it is very natural to write a conservation
law for the generic quantity Q(z, t) as:

∂

∂t
Q(z, t) +

∂

∂z
J(z, t) = 0,

where J(z, t) is the associated flux. Now to make use of this equation one has to identify
the conserved quantities of the microscopic model and their associated fluxes: this is a
priori hard for a one-dimensional system that has in principle infinitely many conserved
quantities, because of integrability. From the exact solution of the Lieb-Liniger model
[Lieb and Liniger, 1963] we know that any state can be parametrized by a set of quantum
numbers, called the rapidities k, that are described by a continuous quasi-particle density
distribution ρp(k) in the thermodynamic limit. The assumption of GHD is that the coarse-
grained ρp(k, z, t) are the relevant conserved quantities, associated to a flux j(k, z, t) =
ρp(k, z, t)v

eff(k, z, t), with a effective velocity given by the implicit equation:

veff(k, z, t) =
ℏk
M

+

∫
dk′ ϕ(k − k′)ρp(k

′, z, t)
(
veff(k′, z, t)− veff(k, z, t)

)
, (4.3)

where the Lieb-Liniger kernel is defined as:

ϕ(k − k′) =
2kc

k2c + (k − k′)2
, with kc =

Mg1D
ℏ2

.

Finally it is even possible to include an external potential, at the hydrodynamic level, and
obtain a GHD equation directly applicable to a trapped one-dimensional Bose gas [Doyon
and Yoshimura, 2017]:

∂ρp
∂t

+
∂

∂z

(
ρpv

eff
)
− 1

ℏ
∂V (z)

∂z

∂ρp
∂k

= 0, (4.4)

where ρp ≡ ρp(k, z, t).
Equation (4.4) is very reminiscent of the one-dimensional collisionless Boltzmann equa-

tion, with the crucial difference that the interactions between particles are taken into
account in the non-linear equation defining the effective velocity (4.3). This analogy is
interesting to interpret equation (4.4) as a phase-space equation, as in section 4.3.2. Im-
portantly, one can recover simply the underlying real space Boson density by integrating
over the rapidities: ρ(z, t) =

∫
dk ρp(k, z, t), as well as other local quantities as the mo-

mentum, energy, ... Finally, from a practical point of view, the GHD equation can be
efficiently solved for arbitrary interaction strength and temperature (entering through
the initial state distribution). It is particularly simple in the strongly interacting limit,
as ϕ(k − k′) → 0 and the GHD equations become linear and curiously much harder to
solve in the mean field limit. The GHD predictions have been tested against experiments
and have proven to be robust [Malvania et al., 2021; Schemmer et al., 2019], while being
relatively simple to compute even on a laptop computer.

4.2.3 The inverse scattering transform

The last tool I want to introduce to study one dimensional systems is the inverse scat-
tering transform, that allows to capture interesting properties of equation (4.1). I will
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coarse graining

δz

Q(z, t)J(z, t) J(z + δz, t)

Figure 4.1: Sketch of the hydrodynamic approach, for a narrow channel: an intermediate
length scale δz is introduced, over which the microscopic properties of the model are
averaged, in general assuming a form of local equilibrium, to define local quantities Q(z, t),
associated to fluxes J(z, t) and governed by a continuity equation.

not introduce the general formalism [Ablowitz and Segur, 1981] but highlight a few use-
ful tools. A straightforward calculation shows that equation (4.1) is equivalent to the
equation:

iℏ
∂L
∂t

= [P ,L] , (4.5)

for the Lax pair operators:

L =
iℏ
2M

(
∂
∂z

−
√
kcψ(z, t)√

kcψ(z, t)
∗ − ∂

∂z

)
, (4.6a)

P =
ℏ2

M

(
− ∂2

∂z2
+ kc|ψ(z,t)|2

2

√
kc
2

∂ψ(z,t)
∂z

+
√
kcψ(z, t)

∂
∂z

−
√
kc
2

∂ψ(z,t)∗

∂z
−

√
kcψ(z, t)

∗ ∂
∂z

−kc|ψ(z,t)|2
2

+ ∂2

∂z2

)
, (4.6b)

where I recall that kc = Mg1D/ℏ2 is the inverse length scale associated to two-body
interactions in the one-dimensional geometry.

As L is a hermitian operator, it is diagonalizable and has a real spectrum, Lv = ζv,
and using equation (4.5) it is simple to show that the Lax spectrum ζ is a conserved
quantity

∂ζ

∂t
= 0, and that the eigenvectors evolve according to iℏ

∂v

∂t
= Pv.

The main interest of the Lax pair is that the initial nonlinear problem (4.1) is now mapped
on a linear eigenvalue problem for the Lax spectrum and that equation (4.6a) defines
formally a scattering operator that can be studied by inverse methods in the complex
plane once the spectrum is known [Ablowitz and Segur, 1981]. In particular it is sufficient
to compute the Lax spectrum for a particular time, for example the initial time, to, in
principle, know all the properties of the dynamics, without even solving equation (4.1).
This can be used for example to detect and count solitons in a far from equilibrium state
[Saha and Dubessy, 2022].

4.3 Out of equilibrium phenomena
We decided to investigate out-of-equilibrium physics in this a one-dimensional system with
periodic boundary conditions, and in particular transport phenomena, in the presence of
an obstacle that breaks the integrability of the model. The initial idea was to investigate
the decay mechanisms of persistent currents in one dimension, following a quench as
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Figure 4.2: (a) A 1D Bose gas on a ring perturbed by a localized barrier is quenched out
of equilibrium by phase-imprinting of a quantum of circulation. (b) Energy landscape of
the homogeneous system on a ring: states with integer values of the current per particle
correspond to local minima. The quench (black arrow) transfers the initial state to the
state with one quantum of circulation. Depending on the regime the barrier coherently
couple the +1 and -1 current states (light gray arrow) or induce a phase slip to the 0 state
(dashed blue arrow).

sketched in Figure 4.2, and evaluate the influence of temperature, comparing the weakly
interacting mean-field and the strongly interacting many-body limits. It was useful to
evidence the key role of solitons in the phase-slip mechanism in one-dimension, to clarify
the link with Bose-Josephson physics and to uncover a universal shock wave dynamics.

4.3.1 Transport through a barrier

In [Polo et al., 2019] we used classical field simulations and time dependent Bose-Fermi
mapping to compute the dynamics following a current quench for a one dimensional Bose
gas on a ring in the mean-field and strongly interacting limits, respectively. In the mean
field limit, a narrow Gaussian barrier, of rms width σ ≃ 4ξ, and amplitude V0 = λGPµ
breaks the integrability. At zero temperature, we identify a dual of the Bose-Josephson
physics: the current is initially self-trapped in a steady state and above a critical barrier
height undergoes regular and weakly damped oscillations between ±1, see Figure 4.3a).
At finite temperature, modeled using equation (4.2), and averaged over 100 realizations
sampling thermal equilibrium for a temperature kBT = µ, we find that random phase slips
induced by the reflection of slow solitons on the barrier, see Figure 4.3c), induce on average
an exponential decay of the current, with a rate dependent on λGP, see Figure 4.3b). The
individual event of a soliton reflection on the barrier [Hakim, 1997] can be seen as the
adiabatic process connecting the +1 and 0 current states in Figure 4.2.

In the strongly interacting limit, a delta barrier of energy V0 = λTGEF , where EF is the
Fermi energy of the hardcore bosons, breaks the integrability, while enabling an analyti-
cally tractable solution. At zero temperature it induces coherent phase-slips where each
particle of the many-body state oscillates between the ±1 states, and as λTG higher energy
modes get populated, resulting in a characteristic beatnote pattern, see Figure 4.3d). At
finite temperature kBT = EF , an exponential decay emerges through incoherent phase-
slips associated to the initial thermal population in high energy states, see Figure 4.3e).
In this regime, the Bose-Josephson duality manifests itself by a transition of the cur-
rent oscillation frequency ω from a Rabi scaling ω ∝ λTG to a Josephson-like behavior
ω ∝

√
λTG. One remarkable feature that we observed in both the mean-field and strongly

interacting regime was the apparition of triangular oscillations of the current for large bar-
riers, associated to the propagation of shock fronts in the density dynamics, suggesting
that a universal phenomenon was at play, see section 4.3.2.
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Figure 4.3: Current oscillations and decay in a one dimensional Bose gas at zero tem-
perature for weak (a) and strong (d) interactions, as a function of the barrier strength
(λGP or λTG). Same curves at finite temperature for weak (b) and strong (e) interactions.
(c) Focus on one particular realization for the finite temperature mean-field simulation,
evidencing a phase-slip (top panel) at the vertical dashed red line, through the reflection
of a soliton on the barrier (middle panel), associated to a singularity in the phase profile
(bottom panel).
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Figure 4.4: a) Dynamical phase diagram as a function of the initial population imbal-
ance z0 and barrier strength V1, with empirical boundaries (solid red, blue, black curves)
and analytical estimates (dashed curves), separating the self-trapping (ST), Josephson
oscillations (JO), shock waves (SW), dispersive shock waves (DSW) and over-damped
oscillations (ODO). Examples of density maps and phase-portraits at b) the transition
between the self-trapping and Josephson oscillations, in c) the dispersive shock wave and
d) over-damped oscillations regimes.
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In a separate work [Saha and Dubessy, 2021], I decided to investigate more thoroughly
the Bose-Josephson dynamics for a extended zero-temperature one-dimensional Bose gas,
using a setup and quench protocol based on a population imbalance between z0 two
reservoirs, following the original proposal [Josephson, 1962]. This requires to work on a
ring with two barriers, to define the two reservoirs: one barrier is kept high at all times
while the other one is quenched to a lower height V1 to initiate the dynamics. By varying V1
and z0 and analyzing the dynamics we obtain the dynamical phase diagram of Figure 4.4a).
At large barriers, we recover the expected Bose-Josephson dynamics, showing the self-
trapping transition above a critical initial imbalance, captured by a analytical nonlinear
two-mode model. At smaller barriers we evidence a different regime sustained by direct
transport above the barrier, mediated by dispersive shock waves, similarly to what is
observed for current quenches, see section 4.3.2. At large imbalance and intermediate
barriers, the oscillations are overdamped because they are inhibited by soliton reflections
on the barrier, see Figure 4.4d), as in the previous study [Polo et al., 2019].

4.3.2 Shock waves in one dimension

To investigate the behavior of current oscillations for large barriers, we decided to study
the limiting case of a one-dimensional Bose gas held in a hard wall box. This simplifies
a lot the theoretical treatment as the single particle orbitals are known and correspond
to all sine functions vanishing at z = 0 and z = L, the size of the box. It is then
possible to use this set of functions to build the exact solution in the weakly and strongly
interacting limit, using the PGPE and Bose-Fermi mapping respectively. Interestingly, a
one-dimensional system with hard-wall boundary conditions can be mapped exactly onto
a one-dimensional system with periodic boundary conditions, provided that the system
size is doubled, z ∈ [−L,L], and that the initial states is a odd function of z. This
corresponds to introducing a mirror system to enforce the boundary conditions. As this
is valid at the many-body level, it applies also to the GHD equations and enables to write
a efficient algorithm to solve them [Dubessy et al., 2021].

By combining these three methods, covering the whole interaction strength range, we
were able to uncover the universal features of the post-quench dynamics [Dubessy et al.,
2021], as shown in Figure 4.5. Here the quench is obtained by imprinting a current of
v0 = 0.1×c(γ) on the system, where c(γ) is the interaction dependent speed of sound and
γ =Mg1D/(ℏ2n0) is the dimensionless one-dimensional interaction parameter [Bouchoule
and Dubail, 2022; Lieb and Liniger, 1963]. We find that the overall dynamics is very
similar, once the time is rescaled by the typical period for the propagation of sound inside
the box: L/c(γ). A closer inspection of the density profiles, see Figure 4.5b) reveals that
the exact solutions in the weakly and strongly interacting limit behave differently at short
length scales, however their hydrodynamics behavior is in remarkable agreement. This
is confirmed by the evolution of the global current observable, reported in Figure 4.6a):
for all three regimes, the current exhibits first triangular oscillations, that damp over a
characteristic time τd ≃ L/v0 and become progressively more sinusoidal.

This observation suggests that a universal dephasing mechanism is at play here. In
fact, it is indeed expected in the weak interactions limit that the GPE model supports
dispersive shock waves, that can be explained and predicted within a simplified analytical
modulation theory [El and Hoefer, 2016]. This has been studied before in the context of
the dam break problem, and modulation theory predicts that shocks in one dimension
occur through the propagation of a rarefaction wave and a shock front with a soliton train.

82



4.3. Out of equilibrium phenomena

time [L/c]

TG

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1

p
o
s
it
io

n
 z

 [
L
]

γ=1
GHD

0
0.2
0.4
0.6
0.8

1

GPE

0
0.2
0.4
0.6
0.8

1a) b)

Figure 4.5: a) Density maps for a zero temperature one dimensional Bose gas in a box,
after a momentum boost of 0.1 × c(γ), at weak (GPE), intermediate (GHD) and strong
(TG) interactions. The gray diamond shapes are characteristic of the propagation of
shock fronts. For each map the time is rescaled by L/c(γ), c(γ) being the interaction
dependent speed of sound. b) Universality of the shock front propagation during the
first quarter period: the weak (blue), intermediate (orange) and strong (yellow) interac-
tions density profiles overlap. Differences are also present: the weakly interacting density
presents a soliton train in front of the shock, the strongly interacting density exhibit
Friedel oscillations, characteristic of hardcore bosons.

In Figure 4.5b) these features can be seen for the GPE simulation (blue curve), with the
rarefaction wave propagating to the right and the soliton train to the left. A prediction
of the modulation theory is that the magnitude of the density jumps at the two shock
fronts depend on the velocity quench. As shown in Figure 4.6b) the GHD model fully
capture this effect in the weak interactions limit, despite the absence of the soliton train
in the density profiles, and allows to study the crossover to the strongly interacting limit,
where the results are in agreement with the prediction of the most simple long wavelength
hydrodynamic theory, as expected from the mapping to free Fermions [Girardeau, 1960].

To understand precisely the physical phenomenon at play, it is interesting to look
at the zero-temperature GHD solution, using the quasi-particle occupations n(k, z, t) =
ρp(k, z, t)/ρs(k, z, t) where ρs(k, z, t) = [1/(2π)]dr is the density of state and the dressing
operation is defined as:

[h]dr(k)−
∫
dk′

2π
ϕ(k − k′)n(k′, z, t)[h]dr(k′) = h(k),

for any function h : k → h(k). Using n(k, z, t) the effective velocity (4.3) simply reads:
veff(k) = (ℏ/M)× [k]dr/[1]dr. This picture is useful because it can be shown that at zero
temperature, n(k, z, t) is either 0 or 1 and the groundstate of the system can be pictured
as a Fermi sea of quasi-particles between rapidities [−K,K] [Doyon et al., 2017]. The
quench protocol consists then in boosting the Fermi sea, towards higher rapidities, and
because of the hard-wall boundary conditions, results in a deformation of the Fermi sea,
see Figure 4.7. In particular, this picture gives an intuitive representation of a rarefaction
wave in GHD (encoded in the A–B front) and of a dispersive shock wave (encoded in the
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Figure 4.6: a) Dynamics of the total
current versus time, in scaled units, for
the same parameters as in Figure 4.5, for
GPE (blue), GHD (orange) and TG (yellow)
regimes and their exponential envelope with
a time scale τd (black curves). b) Non uni-
versal density jumps of the two shock fronts
for a large quench of 0.8×c(γ), as predicted
by GHD (filled diamonds) for the whole in-
teraction strength range: they are always
equal in the strongly interacting limit, but
differ in the mean-field. The blue and or-
ange dashed lines are the prediction of the
modulation theory. Inset: density jumps
as a function of the quench magnitude, in
the mean-field limit, comparing the predic-
tions of GHD (circles) and modulation the-
ory (dashed lines).

C–D front). It is interesting to notice that the dispersive shock wave is encoded in GHD
as missing quasi-particles in the Fermi sea at a given position between C and D, because
holes type excitations are usually associated to the many-body generalization of mean-
field solitons [Lieb, 1963]. Finally one can estimate the dephasing time of the oscillations
by estimating the velocity at which the two fronts broaden, that is given by the difference
of the quasi-particles effective velocities evaluated at A and B (or C and D).

4.3.3 A quantitative study of gray-solitons

Finally the last work I report in this chapter is an attempt to characterize systematically
the role of solitons in the one dimensional homogeneous GPE. As we have seen in the
previous sections, solitonic excitations appear naturally in the transport dynamics and
when many of them occur simultaneously they can be hard to identify. I decided to use
the tools of the inverse scattering transform, and in particular the notion of Lax spectrum
to study gray solitons. I was inspired by a recent work on surface gravity waves in water,
that can be modeled by a non-linear one dimensional Schrödinger equation with attractive
interactions, and for which the Lax spectrum allows the identification of bright solitons
[Suret et al., 2020]. In this case, the use of the Lax spectrum is quite straightforward as
the solitons appear as complex eigenvalues of the Lax spectrum, whereas other excitations
remain in the real spectrum.

For the repulsive one-dimensional GPE, the inverse scattering transform predicts that,
for a state with asymptotically constant background density, the Lax spectrum is made of
two continuous branches, separated by a gap, and that within the gap discrete eigenvalues
may be found, each of them being associated to a single soliton [Ablowitz and Segur, 1981].
We tried to turn this general result into a empirical criterion that can be used in a finite
size system, more relevant for the experiments [Saha and Dubessy, 2022]. This is not an
easy task because for a finite size, discrete representation of the one dimensional GPE
(4.1), the Lax operator (4.6a) is a matrix, whose real spectrum is by essence made of
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Figure 4.7: Sketch of the GHD dy-
namics at T = 0: the light blue
shaded shape indicates the area where
n(k, z, t) = 1, inside the box potential.
a) State just after the quench: boosted
Fermi sea. The dashed red arrows indi-
cate the initial effective velocity field of
the quasi-particles, for the simple case
γ ≫ 1. b) After a time t < L/(2c) the
occupation function ρp(k, z, t) acquires
a non trivial structure and the dynam-
ics is mainly encoded in the position of
the points A, B, C and D. c) Sketch of
the real space density ρ(z) correspond-
ing to the state of b).

discrete eigenvalues.
Figure 4.8 illustrates this point: a state with a complicated dynamics is generated

by first sweeping back and forth a Gaussian obstacle through a one-dimensional system
and then, after having removed the obstacle, observing the dynamics with many features
propagating at approximately constant velocity, that can be identified by the eye as gray
solitons. In this particular case, the Lax spectrum seems almost continuous, i.e. the gap is
filled with a large number of eigenvalues corresponding to solitons. However by inspecting
the real space profile of the eigenvectors it is clear that some are localized whereas others
are delocalized. Recalling that the Lax spectrum is obtained as the solution of Lv = ζv,
where v = (v1(z), v2(z))

T is a two component vector, we propose to use as a measure of
the localization the ratio:

M(ζ) = L

∑
i=1,2 maxz |vi(z)|2∑
i=1,2 maxk |v̂i(k)|2

,

where v̂i(k) is the Fourier transform of vi(z). The M(ζ) value is equal to one for a
fully delocalized state and can be estimated as LkcN/π2 for a dark soliton. In order
to distinguish the localized states, we use the phenomenological threshold value Mc =
0.05× LkcN/π

2.
Figure 4.9 shows the distribution of M values for the Lax spectrum of Figure 4.8,

evidencing that the central part of the spectrum is made of localized eigenvalues, corre-
sponding to solitons. Using the criterion M(ζ) > Mc allows to define the boundaries
between the two continuous branches and the gap [ζL, ζR] within which lie the discrete,
localized, eigenvalues. Using again the results of the inverse scattering transform one can
link a discrete Lax eigenvalue to the velocity of the soliton. In particular for a state with
a single gray soliton, analytical formulas are available [Saha and Dubessy, 2022] and the
discrete Lax eigenvalue is ζ = −(ℏ/2M)×(k+

√
kcn0 sin [ϕ]), where ℏk/M is the velocity of

the background flow, n0 is the background density and ϕ ∈ [−π/2, π/2] is an angle related
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Figure 4.8: a) Density evolution color map for a far from equilibrium state of the one-
dimensional GPE, with periodic boundary conditions. Many dark lines can be seen that
correspond to the propagation of density dips, associated to gray solitons. b) Correspond-
ing Lax spectrum (blue symbols). The black dashed lines indicate the Lax spectrum of
the groundstate of the system, evidencing a clear gap. Upper inset: initial density profile,
exhibiting strong density fluctuations. Lower inset: density profiles of three Lax eigen-
vectors, highlighted in the main figure by the arrows, evidencing that some are localized,
the magenta curve, corresponding to a delocalized state is magnified by a factor ×15.

Figure 4.9: Open blue circles: distribution
of M values for the Lax spectrum of Fig-
ure 4.8. The dashed-dotted magenta line in-
dicates the phenomenological threshold Mc,
that allows to define the two gaps bound-
aries ζL and ζR (light blue vertical lines).
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to the soliton depth. In that case the gap edges are ζL,R = −(ℏ/2M)×(k±
√
kcn0) (where

the ± sign refer to the left/right edge) and the gap width ζR − ζL = ℏ
√
kcn0/M = cs is

the speed of sound, while the gap center ζL + ζR = −ℏk/(2M) is the opposite of half the
background velocity. Assuming that this remains true for a far from equilibrium state,
we can extract from the Lax spectrum the speed of sound, the background velocity and
the distribution of soliton velocities.

Conclusion
In this chapter I introduced tools and theoretical studies that are relevant in the context
of one-dimensional atomtronics circuits. In particular I focused on the transport proper-
ties in one-dimensional ring and box traps and evidenced the key role played by solitons
and dispersive shock waves in the dynamics. By combining the simulation of a current
quench using microscopically exact models and generalized hydrodynamic equations we
have studied how a localized barrier –a weak-link– breaks the integrability of the system.
First we have shown that in the mean-field limit the effect of weak-link could be inter-
preted as a dual of the Bose-Josephson dynamics for circulation states, with a transition
occurring at a critical barrier strength. We also evidenced the role of thermally activated
solitons in the phase-slips leading to a dissipation of the average current at finite temper-
ature. For large barrier strengths we revealed a universal long wavelength dynamics in
the propagation of shock fronts.

This phenomenon is well understood in the mean-field limit, using the dispersive shock
waves analytical framework, and we have shown how generalized hydrodynamics could
extend these predictions to arbitrary interaction strengths. In the mean-field limit I
also studied the dynamical phase diagram of a one-dimensional Bose-Josephson junction,
in the presence of a tunable weak-link and identified the different regimes, involving
Bose-Josephson dynamics, dispersive shock waves, solitons and phase-slips. Finally to
quantitatively study the gray soliton properties I proposed to use the Lax spectrum as
a tool to characterize far from equilibrium states, it would be interesting to apply it to
thermal states that contain many spontaneous solitons [Karpiuk et al., 2012, 2015].

What I find especially interesting in the one-dimensional ring with a tunable weak-
link is that both the small and large barrier limits are exactly integrable. As a practical
consequence both limits can be studied very precisely using a variety of methods which
allows a good understanding of their out-of-equilibrium properties, even for non pertur-
bative quenches. In particular, as shown in this chapter, the relaxation to a steady-state
can be generically explained by dispersive effects, due to the many-body quasi-particles
dispersion relation. It would be interesting to compare the dynamics at a intermediate
barrier strength, for which the one-dimensional system is not integrable anymore to test
if the microscopic Gross-Pitaevskii model and the generalized hydrodynamics equations
give the same results, for the relaxation of global observables, in the mean-field limit. In
particular I expect that in this regime the dynamics will be dominated by phase-slips, as-
sociated to soliton reflections at the barrier, and this microscopic process is not captured
a priori by the generalized hydrodynamic equations.

As a last and more speculative thought, I have the intuition that their must be a
connection between the Lax spectrum and the quasi-particles rapidity distribution of
the generalized hydrodynamics. Indeed in the mean-field limit they both contain the
information on all the conserved quantities and I wonder if one can write an effective
equation to predict how the Lax spectrum evolves in the presence of an integrability
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breaking term in the Hamiltonian. This would be interesting to track or predict the
trajectories of solitons in a complex environment.
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Conclusion

During the last ten years, I contributed to the study of superfluidity in low dimensional
Bose gases, both experimentally and theoretically. One of the tools that I developed is a
agile eight channel radio-frequency source based on direct digital synthesis. It enables a
fine time-dependent control of the adiabatic potential confining a degenerate Bose gas on
a two-dimensional surface. This capability is at the heart of ongoing and future projects
of the group.

Summary of the habilitation thesis

In the first chapter I presented the design of the Rubidium experiment, that is routinely
and robustly producing Bose-Einstein condensates for more than ten years. Its main
strength is the high quality vacuum in the final chamber and the stability of the adiabatic
potential, leading to long lifetimes in the trap. I discussed also its weaknesses and indi-
cated the planned short term upgrades: an update of the laser cooling/imaging system
and the implementation of a non-destructive imaging technique.

The second chapter details the tools and know-how we developed to trap and study
two-dimensional Bose gases, relying for example on the in situ imaging of the collective
modes density oscillations. I reported our attempt to compensate the effect of gravity
in the shell trap potential to approach the bubble geometry. Unexpectedly we evidenced
how the non separability of the potential induces a transition to a stable ring geometry,
due to the inhomogeneous transverse trapping energy.

In the third chapter I addressed various manifestations of superfluidity in the exper-
iment, focusing on out-of equilibrium properties. In particular I showed how the local
analysis of a collective mode excitation was able to disentangle the respective dynamics of
the normal and superfluid phases that co-exist in a harmonic trap. Moreover I reported
how we can set the atoms in rotation and control their effective rotation frequency, reach-
ing the fast rotation regime, that provides a new playground to test superfluid transport
in a unusual situation.

Finally, the fourth chapter reports theoretical studies of the dynamics in a one-
dimensional Bose gas trapped in a ring geometry. I presented the main numerical and
theoretical methods I used to address this topic. I showed how the practical question of
the stability of super-currents in the presence of an obstacle lead to interesting develop-
ments in the context of integrable dynamics: the universal behavior of shock waves in
the Lieb-Liniger model and the characterization of grey solitons in far from equilibrium
configurations.
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b′ ωrf Ω0 ωr ωz
Year Ref. G/cm MHz kHz Hz kHz Remarks
2013 143 210 2.336 27.7 26 1.97 quasi 2D regime reached by

increasing ωz, RWA well
satisfied (Ω0/ωrf < 0.03).

2014 58 210 1 29 33/44 1.91
2016 46 210 1 30 33.8/48.0 1.83
2020 89 55 0.3 48 33.70 0.356 2D vortices (ωz/ωr > 8),

beyond RWA (Ω0/ωrf > 0.16).2022 90 82–110 0.3 85 var. ∼0.5

Table 5.1: Quadrupole dressed trap parameters used for the main experiments presented
in this manuscript: b′ is the horizontal quadrupole gradient, ωrf the rf frequency, Ω0 the
rf coupling at the bottom of the trap, ωr and ωz are the harmonic trap frequencies at the
bottom of the shell potential. When two values are reported for ωr the trap is anisotropic,
due to a non-circular rf polarization.

Table 5.1 summarizes the dress trap parameters of the experiments reported in chap-
ters 2 and 3. We first used high gradients and relatively small rf couplings to increase
the vertical trapping frequency to ωz ∼ 2π × 2 kHz. The idea was to match the typical
values of other experiments in the quasi-two-dimensional regime to be able to use the
same analysis tools and enable a study of Kosterlitz-Thouless physics. In order to have a
reasonable shell radius the rf frequency was in the megahertz range. Later, it was more
convenient to decrease the gradient and increase the rf coupling, while keeping a very
oblate geometry, to study rotating Bose gases. Indeed it helps to limit the Landau-Zener
losses, inherent to adiabatic potentials, and give access to the long time scale necessary to
achieve thermalization in a rotating frame. To keep approximately the same shell radius
and facilitate the fine-tuning of the rf polarization we work since then with a fixed rf
frequency of 300 kHz.

Ongoing projects

As mentioned in chapter 3 we are still investigating the vortex lattice melting transition
that we observed. In principle it would require the computation of correlation functions
characterizing the translational and orientational order. However these are strongly af-
fected by the inhomogeneity of the density profile and finite size effects which are not
trivial to account for. One promising alternative is the investigation of the proliferation
of defects in the vortex lattice as the rotation frequency increases. Indeed the KTHNY
theory predicts that the melting occurs through first the apparition of dislocations and
then disclinations. Figure 5.1 presents an example of such an analysis for a particular
realization of the experiment.

In order to assess the finite size effects we will study the melting transition using a
finite temperature stochastic projected Gross-Pitaevskii simulation, as described in section
2.2.2. To this end I have developed a spectral scheme adapted to the harmonic plus quartic
quasi two-dimensional model based on a Laguerre-Gauss basis for the in-plane dynamics
and Hermite-Gauss basis for the transverse confinement. The simulation will be used to
sample the grand canonical classical field ensemble in a rotating frame, and the resulting
density profiles will be analyzed following the same protocol as the measured profiles.

Finally, to investigate more precisely the collective modes in the dynamical ring config-
uration described in 3.3.2, we are currently developing a non-destructive imaging scheme
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Figure 5.1: Vortex lattice deduced from a map of
the vortices positions, as explained in section 3.2.3.
The lattice sites with five, six and seven neighbors
are marked by magenta diamonds, black disks and
red squares, respectively. Dislocations appear as 5-
7 pairs that may unbound to form disclinations (an
isolated 5 or 7 neighbors site). A few dislocations
are highlighted by the blue ellipses. Finite size ef-
fects explain the existence of sites with less than five
neighbors close to the boundary of the vortex lattice.

that will enable the recording of a full movie at each run of the experiment. If it works
well, this will help to study the collective modes behavior as a function of the rotation
frequency. This project is at the heart of an ongoing PhD thesis that I co-supervise.

Future research directions

To conclude this manuscript, I would like to discuss a few perspectives and future research
directions. To my opinion the most logical next step is to combine the results of chapters
2 and 3 to explore the physics of rotating superfluids on a curved two-dimensional surface.
The idea would be either to prepare a rotating superfluid at the bottom of the shell
potential and then compensate partially the gravity to let the rotating gas expand on the
surface, going beyond the harmonic plus quartic approximation or to first compensate the
gravity and try to spin up directly the superfluid in a quartic or ring shaped potential.
One unique feature of the shell trap is the possibility to study with these scenarios the
competition between curvature and rotation in the dynamics.

These questions are prominent in the field of geophysics, when one tries to model the
classical hydrodynamic transport in a thin layer of the atmosphere. In these systems the
competition between curvature and rotation gives rise to special classes of waves, as for
example Rossby waves with a peculiar dispersion relation. I think that our experiment
will be able to produce an analog simulation of this phenomenon and that we have all the
tools to observe quantum Rossby waves. I have initiated a collaboration with the group
of Sergey Nazarenko, that will provide a theoretical support and bring an expertise in
geofluids modeling. In principle the approximations used to derive the dispersion relation
of Rossby waves from classical hydrodynamics equations can be adapted to the equations
describing superfluid hydrodynamics.

Interestingly the geofluid – curved superfluid analogy opens an exciting perspective
in the study of two-dimensional turbulence. Classical turbulence is known to be a very
hard problem, owing to the complexity of the underlying Navier-Stokes equations, and
superfluid hydrodynamics allows to build models of turbulent phenomena, in a controlled
environment [Nazarenko, 2011]. In superfluid two-dimensional turbulence it is interesting
to study the dynamics of vortices and anti-vortices [Gauthier et al., 2019]. In order to
address this issue, I want to improve the vertical imaging system on the experiment to be
able to see the vortices in situ. To achieve this, I plan to use the 5S−6P transition of 87Rb
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to benefit from the smaller wavelength and achieve a sub-micrometer imaging resolution.
With this tool, an outstanding achievement would be to study the mechanisms explaining
the formation of the great red spot on Jupiter, that will appear through vortex clustering
in a curved superfluid.

92



Appendix A
The dressed quadrupole trap in the rotating
wave approximation

In this appendix I consider the dressed quadrupole trap in the rotating wave approxima-
tion, described by equation (2.16), in the case of the most general rf polarization (1.6). I
recall here these two equations:

V (r) = ℏ
√

(ωrf − αℓ)2 + Ω(r)2 +Mgz,

Ω(r) =
Ω0√
2

(
1−

ρ2 − 2
√
η(1− η)(x′2 − y′2)

2ℓ2
− 2z

ℓ
(2η − 1)

)1/2

,

where η ∈ [0, 1]. The (x′, y′) axes are rotated with respect the (x, y) axes, by an angle ϕ′

dependent on the rf polarization, see equation (1.5).
In order to study the properties of this potential it is first interesting to consider the

mapping:
(x′, y′, z) → ℓ(sin [χ] cos [ϕ] , sin [χ] sin [ϕ] , cos [χ] /2), (A.1)

which restores a spherical symmetry and simplifies the expressions. The potential now
reads:

V (ℓ, χ, ϕ) = ℏ
√

(ωrf − αℓ)2 + Ω(χ, ϕ)2 +Mg
ℓ

2
cos [χ] ,

where the coupling only depends on the angles (χ, ϕ) on the sphere:

Ω(χ, ϕ) =
Ω0√
2

(
1− sin [χ]2

1− 2
√
η(1− η) cos [2ϕ]

2
− (2η − 1) cos [χ]

)1/2

.

The coupling vanishes for ϕ0 = ±π/2 (i.e. in the direction of y′), and for an angle
cos [χ0] = (2η−1)/(1+2

√
η(1− η)). This results, in general, in two holes in the potential:

for example with a linear polarization (η = 1/2) the holes are at the equator (cos [χ0] = 0),
while for a σ+ circular polarization the holes coalesce at the north pole (cos [χ0] = 1).
The coupling is maximal and equal to √

ηΩ0 at the south pole when η > 1/2, at the north
pole when η < 1/2, and along the meridians ϕ = 0 and π (i.e. at the intersection of the
shell surface and the xz plane) when η = 1/2.

The minimal potential surface, i.e. the two-dimensional shell surface, is obtained as:

∂V

∂ℓ
= 0 ⇒ ℓeq(χ, ϕ) = r0

1− ϵ cos [χ]√
1− ϵ2 cos [χ]2

Ω(χ, ϕ)

ωrf

 ,

93



Appendix A. The dressed quadrupole trap in the rotating wave approximation

where r0 = ωrf/α and ϵ =Mg/(2ℏα). The potential on this surface is:

Veq(χ, ϕ) =
Mgr0
2

cos [χ] +

√
1− ϵ2 cos [χ]2ℏΩ(χ, ϕ).

It has a well defined minimum at the south pole (χ = π), provided that:

Mgr0 > ℏΩ0

√
η(1− 3ϵ2) + (1− ϵ2)

√
1− η

√
1− ϵ2

≥ ℏΩ0

√
η(1− 3ϵ2)− (1− ϵ2)

√
1− η cos [2ϕ]

√
1− ϵ2

,

where the inequality is saturated for ϕ = ±π/2 (when η < 1). This condition is a
generalization of the criterion (2.22) to a arbitrary polarization. It shows that for a non
perfect circular polarization, gravity compensation by reducing r0 (i.e. increasing the
gradient), results in the formation of a double well-like potential, in which the minima are
located in the direction of the holes. This provides an extremely sensitive probe of the rf
polarization and we use it for the fine tuning of the circular polarization [Guo, 2021; Rey,
2023].

I now focus on the equilibrium position at the south pole, for a arbitrary polarization,
assuming that the above inequality is satisfied. The equilibrium position is

zeq = −r0
2

(
1 +

ϵ√
1− ϵ2

√
ηΩ0

ωrf

)
,

and expanding to second order the potential (in Cartesian coordinates) one gets the three
oscillation frequencies:

ωz = 2α

√
ℏ

M
√
ηΩ0

(1− ϵ2)3/4,

ωx′ =

√
g

4|zeq|

(
1− ℏΩ0

2Mg|zeq|
√
1− ϵ2

η +
√
η(1− η)
√
η

)1/2

,

ωy′ =

√
g

4|zeq|

(
1− ℏΩ0

2Mg|zeq|
√
1− ϵ2

η −
√
η(1− η)
√
η

)1/2

.

The strongest in-plane confinement occurs along the y′ axis, that also corresponds to the
direction of the holes. The in-plane anisotropy is given by:

ε =
ω2
y′ − ω2

x′

ω2
y′ + ω2

x′
=

ℏΩ0

2Mg|zeq|

√
1− ϵ2

√
1− η

1− ℏΩ0
√
η

2Mg|zeq|

√
1− ϵ2

=

√
1− ϵ2

√
1− η

2ϵωrf

Ω0
+

√
η√

1−ϵ2 (3ϵ
2 − 1)

,

while the average frequency is

ω2
0 =

ω2
y′ + ω2

x′

2
=

g

4|zeq|

(
1−

ℏΩ0
√
η

2Mg|zeq|
√
1− ϵ2

)
.

This formulas are useful in the context of rotating Bose gases, see section 3.2.1, as we use
a rotating anisotropy to spin up the superfluid.
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Appendix B
The dressed quadrupole trap beyond the
rotating wave approximation

I derive in this appendix the formalism used to describe the atom-field interaction beyond
the rotating wave approximation, based on a Floquet expansion. This derivation is quite
technical and I provide first a brief summary and I discuss the main results. For the case
of a quadrupole trap dressed by a circularly polarized rf field, with respect to the vertical
axis, only three parameters are relevant: the rf frequency ωrf , the maximum atom-field
coupling Ω0 and the quadrupole gradient α (in frequency units). The Floquet expansion
is controlled by the dimensionless parameter Ω0/ωrf . Because of the adiabatic potential
the atoms are located close to a resonant surface defined by ℓ = r0 = ωrf/α, where ℓ2 =
ρ2+4z2. If the polarization is not purely circular two additional dimensionless parameters
are necessary to describe the atom-field coupling (the angles Θ and Φ). In addition, the
effect of gravity enters through a gravitational sag from the surface, controlled by the
dimensionless parameter ϵ = Mg/(2ℏα), where M is the atomic mass. Similarly if the
system is in a rotating frame the equilibrium surface will be deformed by centrifugal
effects.

I will show that it is necessary to include additional beyond RWA effects, that are
often neglected, to describe properly the atom-field coupling on the full shell surface.
In particular the effective polarization seen by the atoms depends on the position on the
resonant surface, resulting in a renormalization of the couplings (due to the π component)
and an effective light-shift (due to the off resonant σ− component). As I will show below
this is crucial to obtain a quantitative agreement with the experiments.

The main result is that the effective Hamiltonian for an atom in a dressed quadrupole
trap is:

Ĥ =
p̂2

2M
+ ℏ
√

(δ(r)− Σ(r))2 + Ω̃(r)2 +Mgz, (B.1)

where δ(r) = ωrf − αℓ is the local detuning, Ω̃(r) = j0Ω+(r)− j2Ω−(r) is the effective rf
coupling, Ω±(r) = Ω0/2 × (1 ∓ 2z/ℓ) are the rf coupling corresponding to the local σ±

polarization, the coefficients jn ≡ Jn(Ωπ(r)/ωrf) are defined in terms of Bessel functions
of the first kind and Ωπ(r) = Ω0ρ/ℓ is the rf coupling induced by the π polarization. In
equation (B.1) Σ(r) is a shift of the resonance induced by the off resonant coupling terms,
and approximately given by, at leading order:

Σ(r) ≃ j0Ω−(r)(j0Ω−(r)− 2j2Ω+(r))

4ωrf

. (B.2)
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Figure B.1: a) Relative strength of the
π, σ+ and σ− rf couplings as a function
of the angle χ. At the south (north)
poles, where χ = π (0), the polarization
is purely circular, while at the equator
(χ = π/2) the π polarization is dom-
inant. b) Comparison of the dressed
state energy on the resonant surface
computed with different levels of ap-
proximation. The RWA value is taken
as reference. The computation is done
with Ω0/ωrf = 0.5, a value larger than
the one used in the experiments.

Figure B.1 shows the main consequences of beyond RWA terms for a quadrupole trap
dressed by a circularly polarized rf field. First, as the angle χ (defined through the map of
equation (A.1)) decreases, from π to 0, the effective local rf field polarization changes, due
to the rotation of the static magnetic field, as sketched in figure 1.3. It is σ+ circularly
polarized at the south pole, σ− at the north pole, and the largest component is the π
polarization at the equator. As mentioned above, and detailed in the following sections,
this affects the effective coupling strength. One way of assessing the importance of beyond
RWA terms is to focus on the resonant surface δ(r) = 0, corresponding to the ellipsoid
defined by ℓ = r0 and compute the magnetic energy on this surface as a function of the
angle χ. Figure B.1b) shows that the Floquet expansion converges at the second order,
at least for the chosen coupling strength Ω0/ωrf = 0.5, and that it is well captured by the
simple analytic model of equations (B.1) and (B.2).

Finally I will also briefly discuss the terms that are often neglected and discarded when
writing the adiabatic potential Hamiltonian and that are responsible for Landau-Zener
losses [Burrows et al., 2017] or spin-orbit coupling terms [Corman, 2016].

B.1 General formalism
I describe here the general formalism for the interaction of an atom in its electronic ground-
state and both a static magnetic field and a time-dependent, periodic, radio-frequency
field. I assume that the atom-field coupling can be described using the total spin operator
F̂ and that the Hamiltonian reads:

Ĥ =
p̂2

2M
+
µBgF
ℏ

F̂ · (B0(r) +B(r, t)) , (B.3)

where M is the atomic mass, ℏ is the reduced Planck constant, µB is the Bohr magnetron,
gF the gyromagnetic factor, B0 and B are the static and oscillating magnetic fields,
respectively. For the sake of simplicity I will assume that gF > 0. I first focus on the
atom field coupling and I will discuss later the effect of additional terms in equation (B.3),
as for example the gravitational potential or the effect of rotation.

To study the Hamiltonian (B.3) it is first convenient to perform the spin rotation:

Û0 = exp
[
i
π

ℏ
n0(r) · F̂

]
, (B.4)
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that amounts to choose the quantization axis along the local static magnetic field B0(r)
direction and where the unitary vector is:

n0(r) =
B0(r) + |B0(r)| ez√

2 |B0(r)|
√

|B0(r)|+B0(r) · ez
.

The new Hamiltonian Ĥ0 = Û †
0ĤÛ0 can be written explicitly:

Ĥ0 =

[
p̂− Â0(r)

]2
2M

+ ω0(r)F̂z +
µBgF
ℏ

F̂ · B̃(r, t),

where I defined the local Larmor frequency: ω0(r) = µBgF |B0(r)| /ℏ. The spin rotation
induces a spin-orbit coupling through the vector field Â0(r) = iℏÛ †

0∇Û0 and an effective
oscillating field:

B̃(r, t) = 2n0(r) (B(r, t) · n0(r))−B(r, t).

This equation shows that even if the rf magnetic field is homogeneous, i.e. B(r, t) ≡ B(t),
the effective field contributing to the coupling is inhomogeneous, due to change of the local
orientation of the quantization axis in the inhomogeneous static magnetic field.

The fact that we require that the atomic spin follows adiabatically the external mag-
netic field results in the modification of the kinetic energy term of the Hamiltonian. This
modification can be interpreted as a gauge field that induces a spin-orbit coupling term
as it depends on the F̂x,y,z operators. This gives rise to two different kind of terms. On
the one hand terms that are proportional to F̂z or the identity and that do not change
the spin state: these induce extra terms in the effective Hamiltonian that act as gauge
fields [Corman, 2016]. On the other hand, the remaining terms induce spin-flips that can
be seen as loss channels [Burrows et al., 2017]. As I will show below, see section B.3, both
terms are usually small in the experiment.

Introducing now the spin raising and lowering operators F̂± = F̂x ± iF̂y results in:

Ĥ0 =

[
p̂− Â0(r)

]2
2M

+ [ω0(r) + Ωz(r, t)] F̂z + Ω+(r, t)F̂+ + Ω−(r, t)F̂−,

where I defined the time dependent couplings:

Ωz(r, t) =
µBgF
ℏ

B̃z(r, t), (B.5a)

Ω±(r, t) =
µBgF
2ℏ

(
B̃x(r, t)∓ iB̃y(r, t)

)
. (B.5b)

I now remove the time dependence in the term involving F̂z using the spin rotation:

R̂ = exp

[
−i (ωt+ f(r, t))

F̂z
ℏ

]
,

where f(r, t) =
∫ t
dt′Ωz(r, t

′) and ω = 2π/T where T is the period of the oscillating field
B(r, t). This transformation results in Ĥ1 = R̂†Ĥ0R̂− iℏR̂†∂tR̂ and p̂ → p̂−∇f(r, t)F̂z,
giving:

Ĥ1 =

[
p̂− Â1(r, t)

]2
2M

− δ(r)F̂z + Ω+(r, t)e
i(ωt+f(r,t))F̂+ + Ω−(r, t)e

−i(ωt+f(r,t))F̂−, (B.6)
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where the local detuning is δ(r) = ω − ω0(r) and the spin-orbit coupling now reads:

Â1(r, t) = ∇f(r, t)F̂z + R̂†Â0(r)R̂.

Hamiltonian (B.6) is time periodic with a period T : it is therefore natural to solve it
using a Fourier series expansion (or Floquet expansion), that I detail now.

Assuming that B(r, t) has no dc component, f(r, t) is also periodic in time, with the
same period T and I may introduce the formal Fourier series expansion:

eif(r,t) =
∑
n

cn(r)e
inωt. (B.7)

Following the Floquet formalism I look now for a solution of the Schrödinger equation
under the form:

|ψ⟩ =
∑
n

ei(nω−E/ℏ)t |ψn⟩ ,

where ⟨ψn|ψm⟩ = 0 for n ̸= m, and the normalization of the wavefunction implies that∑
n ⟨ψn|ψn⟩ = 1. The eigenvalue equation E |ψ⟩ = Ĥ1 |ψ⟩ results in a infinite system of

coupled equations:

E |ψn⟩ = D̂n(r) |ψn⟩+
∑
k ̸=0

[
K̂k(r) + V̂k(r)

]
|ψk+n⟩ , (B.8)

where I introduced the effective (time averaged) kinetic energy operator:

K̂k(r) =
1

T

∫ T

0

dt eikωt

[
p̂− Â1(r, t)

]2
2M

, (B.9)

the atom-field couplings:

V̂k(r) =
∑
l

[
Ω̃

(l+1+k)
+ (r)cl(r)F̂+ + Ω̃

(l+1−k)
− (r)cl(r)

∗F̂−

]
, (B.10)

and the coupling harmonics:

Ω̃
(k)
± (r) =

1

T

∫ T

0

dtΩ±(r, t)e
±ikωt. (B.11)

The block diagonal term (acting within the n-th manifold) is:

D̂n(r) = nℏωÎ − δ(r)F̂z + K̂0(r) + V̂0(r). (B.12)

Equations (B.8), (B.9), (B.10), (B.11), and (B.12) do not depend explicitly on time
and the eigenvalues can be computed using standard matrix diagonalization, using an
appropriate truncation of the infinite set of coupled equations. The convergence of the
Floquet expansion approximation can be tested by varying the truncation order. Until
now I have used a very general formalism that can account for any static field, rf polar-
ization, eventually include harmonics in the oscillatory field and model also the spin-orbit
coupling terms.

I have now all the tools to perform a systematic and controlled study of the system.
The main remaining difficulties are: the computation of the time dependent couplings of

98



B.2. Approximate analytic solution

Eq. (B.5), the determination of the Fourier series coefficients of Eq. (B.7) and the coupling
harmonics of Eq. (B.11). Finally to obtain the adiabatic potential I have to diagonalize
the eigenvalue equations. The effect of gravity or rotation can be taken into account by
substituting:

D̂n(r) → D̂n(r) +MgzÎ −Ωrot · L̂,

where L̂ = r ×
(
p̂− Â1(r, t)

)
.

A common approximation consists in assuming that the oscillating field B(r, t) is
purely sinusoidal with time, such that only the ±1 harmonics contribute directly in equa-
tion (B.10), and the atom-field coupling (B.10) writes:

V̂k(r) = Ω̃
(1)
+ (r)c−k(r)F̂+ + Ω̃

(1)
− (r)ck(r)

∗F̂− + Ω̃
(−1)
+ (r)c−k−2(r)F̂+ + Ω̃

(−1)
− (r)ck−2(r)

∗F̂−.

Finally, as I will show explicitly for the quadrupole dressed trap example, see section
B.3, the spin orbit coupling terms K̂k are usually very small in the adiabatic potential,
and it is reasonable to keep only the zero-order term:

K̂0 =
1

T

∫ T

0

dt

[
p̂− Â1(r, t)

]2
2M

≃ p̂2

2M
,

that can often be approximated as the standard kinetic energy as is done in the above
equation. This approximation can be justified as follows. The spin-orbit coupling terms
are responsible for the Landau-Zener losses in adiabatic potentials. As usually the exper-
iments are done in a regime where these losses are small, one can guess that all spin-orbit
coupling terms including the ones acting as pure gauge fields without inducing losses must
be small.

B.2 Approximate analytic solution
The infinite system of equations (B.8) can be formally solved using operator algebra,
assuming that (as is often the case) the n = 0 manifold plays a special role. Let P̂ be the
projector on the n = 0 manifold and Q̂ = Î − P̂ its complementary. Collecting all the
|ψn⟩ in a single column vector |Ψ⟩, the infinite system of equations (B.8) can be written
E |Ψ⟩ = Ĥ |Ψ⟩ and formally [Cohen-Tannoudji et al., 1998]:

EP̂ |Ψ⟩ = P̂ĤP̂ |Ψ⟩+ P̂ĤQ̂ |Ψ⟩ ,
EQ̂ |Ψ⟩ = Q̂ĤP̂ |Ψ⟩+ Q̂ĤQ̂ |Ψ⟩ .

For an energy E not in the kernel of Q̂ĤQ̂ the second equation is equivalent to:

Q̂ |Ψ⟩ = Q̂
EQ̂ − Q̂ĤQ̂

ĤP̂ |Ψ⟩ ,

where the operator fraction notation is a shortcoming for operator inversion. This results
in an exact implicit self-consistent equation for E:

EP̂ |Ψ⟩ = P̂ĤP̂ |Ψ⟩+ P̂Ĥ Q̂
EQ̂ − Q̂ĤQ̂

ĤP̂ |Ψ⟩ .

This last equation may be used to build a systematic perturbative expansion to find E.
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Indeed, including only the first order correction results in:

E |ψ0⟩ =

(
D̂0 +

∑
n ̸=0

(K̂n + V̂n)
Î

EÎ − D̂n

(K̂†
n + V̂ †

n )

)
|ψ0⟩ ,

where I used the fact that K̂−n = K̂†
n and V̂−n = V̂ †

n . Recalling that D̂n = nℏωÎ + D̂0

and using the formal operator expansion:

Î

EÎ − D̂n

= − 1

nℏω

∞∑
k=0

(
EÎ − D̂0

nℏω

)k

,

I obtain the leading order (in 1/ω) correction to the eigenvalue equation:

E |ψ0⟩ =

(
D̂0 −

∑
n̸=0

(K̂n + V̂n)(K̂
†
n + V̂ †

n )

nℏω

)
|ψ0⟩ .

Assuming, as explained above, that the spin orbit coupling terms are negligible, this last
equation can be written, restoring explicitly the spatial dependence of the operators:

E |ψ0⟩ =

 p̂2

2M
− δ(r)F̂z + V̂0(r) +

∑
n>0

[
V̂n(r)

†, V̂n(r)
]

nℏω

 |ψ0⟩ ,

where the last term involves the commutator between V̂n(r)† and V̂n(r). Due to the form
of the coupling terms, this commutator is necessarily proportional to F̂z, such that I may
write: ∑

n>0

[
V̂n(r)

†, V̂n(r)
]

nℏω
= Σ(r)F̂z,

and the effective equation for the n = 0 manifold reads:

E |ψ0⟩ =
(

p̂2

2M
− [δ(r)− Σ(r)] F̂z + V̂0(r)

)
|ψ0⟩ . (B.13)

Therefore the main effects of the beyond RWA terms are a renormalization of the coupling
strength, due to the coefficients ck(r) in the definition of V̂0(r) and a shift of the resonance
due to the off-resonant corrections contributing to the coefficient Σ(r). The usual RWA
expression is recovered by considering the limit Σ(r) = 0, c0(r) = 1 and ck(r) = 0 for
k ̸= 0.

B.3 An example: the dressed quadrupole trap
I consider now a quadrupole trap with a z symmetry axis for which the static magnetic
field is:

B0(r) = b′(xex + yey − 2zez),

where b′ is the horizontal gradient. The Larmor frequency then takes a very simple
form: ω0(r) = αℓ where α = µBgF b

′/ℏ is the horizontal gradient in frequency units and
ℓ2 = ρ2 + 4z2, with (ρ, ϕ, z) the standard cylindrical coordinates.
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In order to obtain simple expressions I focus on atoms in a F = 1 groundstate as
in [Guo et al., 2020], for which the spin rotation (B.4) reads:

Û0 =

 −1
2
+ z

ℓ
− ρ√

2ℓ
e−iϕ − ℓ+2z

2ℓ
e−2iϕ

− ρ√
2ℓ
eiϕ −2z

ℓ
ρ√
2ℓ
e−iϕ

− ℓ+2z
2ℓ
e2iϕ ρ√

2ℓ
eiϕ −1

2
+ z

ℓ

 .

The spin orbit coupling then writes:

Â0(r) = −i
(
F̂+e

−iϕ − F̂−e
iϕ
) zeρ − ρez

ℓ2
+

(
−F̂z

ℓ+ 2z

ℓρ
+
F̂+e

−iϕ + F̂−e
iϕ

2ℓ

)
eϕ.

In the absence of the rf field trapped atoms follow adiabatically the |+1⟩ eigenstate of F̂z
and I may write: |ψ⟩ = ψ(r) |+1⟩, such that I obtain an effective equation for ψ(r), by
projecting on |+1⟩:

iℏ
∂ψ(r)

∂t
=

[
p̂2

2M
+ ω0(r) +

⟨+1| Â0(r)
2 |+1⟩

2M

]
ψ(r)− i

ℓ+ 2z

ℓ

ℏ2

Mρ2
∂ψ(r)

∂ϕ
,

where I used the fact that p̂ commutes with ⟨+1| Â0(r) |+1⟩. The last term may favor
energetically states with finite angular momentum but the effect is very small [Corman,
2016]. Similarly the correction to the Larmor frequency is small. By evaluating the spin-
flip terms one can estimate the lifetime of the trapped state. I note that all the spin
orbit coupling terms are of the order of ℏ2/(Mℓ2) and therefore to obtain energy shifts
of ∼ kHz one must have ℓ < 1 µm. In this situation losses are dominant, at least in the
experiments.

Considering now a general homogeneous rf dressing field:

B(r, t) = Bx(t)ex +By(t)ey +Bz(t)ez,

for which the couplings read:

Ω±(r, t) =
µBgF
2ℏ

e∓iϕ
[
Bz(t)

ρ

ℓ
∓ i(Bx(t) sin [ϕ]−By(t) cos [ϕ])

+
2z

ℓ
(Bx(t) cos [ϕ] +By(t) sin [ϕ])

]
,

Ωz(r, t) =
µBgF
ℏ

(Bx(t) cos [ϕ] +By(t) sin [ϕ])ρ− 2Bz(t)z

ℓ
.

These general expressions can be used for an arbitrary polarization.
For the sake of simplicity I focus now on a purely circular polarization: Bx(t) =

Brf cos [ωt], By(t) = Brf sin [ωt] and Bz(t) = 0, resulting in:

Ω±(r, t) =
Ω0

2
e∓iϕ

2z cos [ωt− ϕ]± i sin [ωt− ϕ] ℓ

ℓ
,

Ωz(r, t) = Ω0
ρ

ℓ
cos [ωt− ϕ] ,

where I introduced the typical coupling strength Ω0 = µBgFBrf/ℏ.
I may now compute:

f(r, t) =
ρ

ℓ

Ω0

ω
sin [ωt− ϕ]
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and using the Jacobi-Anger expansion (eiz sin[θ] =
∑

n Jn[z]e
inθ):

eif(r,t) =
∑
n

Jn

[
Ω0

ω

ρ

ℓ

]
ein(ωt−ϕ),

where Jn[x] is the n-th Bessel function of the first kind, and therefore cn = Jn[Ω0ρ/(ωℓ)]e
−inϕ ≡

jne
−inϕ.
The only non vanishing harmonics are:

Ω̃
(+1)
± (r) = Ω0

2z − ℓ

4ℓ
,

Ω̃
(−1)
± (r) = Ω0

2z + ℓ

4ℓ
e∓2iϕ.

Finally the atom–field couplings are:

V̂k(r) = eikϕ

[
−Ω+(r)jk

(−1)kF̂+ + F̂−

2
+ Ω−(r)

(−1)kjk+2F̂+ + jk−2F̂−

2

]
,

where I introduced Ω±(r) = Ω0/2 × (1 ∓ 2z/ℓ). For reference, the rf dressed spin orbit
term is:

Â1(r, t) =

[
4F̂z

z2

ℓ3
Ω0

ω
sin [ωt− ϕ]− i

z

ℓ2

(
F̂+e

i(ωt−ϕ+f) − F̂−e
−i(ωt−ϕ+f)

)]
eρ

+

[
−
(
ℓ+ 2z

ℓρ
+

Ω0

ωℓ
cos [ωt− ϕ]

)
F̂z +

F̂+e
i(ωt−ϕ+f) + F̂−e

−i(ωt−ϕ+f)

2ℓ

]
eϕ

+

[
−4F̂z

zρΩ0

ℓ3ω
sin [ωt− ϕ] + i

ρ

ℓ2

(
F̂+e

i(ωt−ϕ+f) − F̂−e
−i(ωt−ϕ+f)

)]
ez.

These expressions are useful to derive analytical formulas or to perform numerical com-
putations. As mentioned above Â1(r, t) is of order ℏ/ℓ, which corresponds to a very small
term. For example, with a length ℓ ∼ 30 µm it gives a small velocity of 0.02mm/s.

The approximate solution then reads:

E |ψ0⟩ =
(

p̂2

2M
− [δ(r)− Σ(r)] F̂z − [j0Ω+(r)− j2Ω−(r)] F̂x

)
|ψ0⟩ ,

where at leading order:

Σ(r) =
∑
n>0

(jn−2 − jn+2)Ω−(r)
(jn−2 + jn+2)Ω−(r)− 2jnΩ+(r)

2nω

≃ j0Ω−(r)
j0Ω−(r)− 2j2Ω+(r)

4ω
.

A straightforward identification of the terms lead to the expression of equation (B.1).
Finally the effective Hamiltonian can be diagonalized by a spin rotation:

U1 = exp

[
iβ(r)

F̂y
ℏ

]
,
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where the angle β(r) is given by:

sin [β(r)] =
Ω̃(r)√

(δ(r)− Σ(r))2 + Ω̃(r)2
and cos [β(r)] =

Σ(r)− δ(r)√
(δ(r)− Σ(r))2 + Ω̃(r)2

.

This position dependent spin rotation gives again a spin-orbit coupling term, that can be
used to evaluate the Landau-Zener losses using a Fermi golden rule approach, and the
final effective Hamiltonian reads:

Ĥ =

[
p̂+∇β(r)F̂y

]2
2M

+

√
(δ(r)− Σ(r))2 + Ω̃(r)2F̂z,

where, for reference,

∇β(r) =
Ω̃(r)∇(δ(r)− Σ(r))− (δ(r)− Σ(r))∇Ω̃(r)

(δ(r)− Σ(r))2 + Ω̃(r)2
.

With the new total potential in the |+1⟩ dressed state:

V (r) = ℏ
√

(δ(r)− Σ(r))2 + Ω̃(r)2 +Mgz,

the equilibrium position and vertical oscillation frequency are the same than the ones
obtained with the RWA formula. However the radial oscillation frequency is modified:

ωr =

√
g

4R

(
1− ℏΩ0

2MgR

√
1− ϵ2

(
1 +

Ω2
0

ω2
rf

))1/2

.

The extra Ω2
0/ω

2
rf term lowers the oscillation frequency, and the criterion for gravity com-

pensation ωr = 0 gives:

ℏΩ0 =
Mg

1 +
Ω2

0

ω2
rf

2R√
1− ϵ2

. (B.14)

With the parameters of section 2.4.2, this last equation predicts that the gravity compen-
sation occurs at α/(2π) = 7.35 kHz/µm in fair agreement with the observations. Equation
(B.14) was obtained after the publication of the results [Guo et al., 2022] and is not given
in the paper.

B.4 Map to spheroidal coordinates

For the quadrupole trap configuration, dressed by a circularly polarized rf field, the po-
tential depends only on the spatial coordinates through ℓ, ρ/ℓ (for Ωπ) and 2z/ℓ (for
Ω±). Therefore it is interesting to map the cylindrical coordinates (ρ, z, ϕ) to spheroidal
coordinates (ℓ, χ, ϕ) where the angle χ is defined through: sin [χ] = ρ/ℓ and cos [χ] = 2z/ℓ.

The total potential reads, in the improved analytical expression and including gravity:

V (ℓ, χ) = ℏ
√
(ωrf − αℓ− Σ(χ))2 + Ω̃(χ)2 +

Mgℓ

2
cos [χ] ,
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where both the shift Σ and the renormalized coupling Ω̃ depend only on χ. The equilib-
rium surface, defined as ∂V (ℓ,χ)

∂ℓ
= 0, is:

ℓeq(χ) = r0

1− Σ(χ)

ωrf

− |Ω̃(χ)|
ωrf

ϵ cos [χ]√
1− ϵ2 cos [χ]2

 .

A lengthy but straightforward computation gives the Laplacian in this coordinate system:

∆ =
7− 3 cos [2χ]

2ℓ

∂

∂ℓ
− 3

sin [2χ]

ℓ

∂2

∂ℓ∂χ
+

5 + 3 cos [2χ]

2

∂2

∂ℓ2

+
cot [χ] + 3 sin [2χ]

ℓ2
∂

∂χ
+

5− 3 cos [2χ]

2ℓ2
∂2

∂χ2
+

1

ℓ2 sin [χ]2
∂2

∂ϕ2
.

Obviously the change of coordinates simplifies the computation of the potential but in-
crease the difficulty of computing the Laplacian. In particular it is not compatible anymore
with a spectral scheme. Therefore, in order to compute the mean field groundstate, it
is necessary to introduce a finite difference scheme, using a rectangular grid of Nℓ × Nχ

elements in the domain [r0 − ∆ℓ/2, r0 + ∆ℓ/2] × [0, π], with ∆ℓ < 2r0, and implement
discrete differential operators acting on ψn,m ≡ ψ(r0 − ∆ℓ/2 + nδℓ, δχ/2 + mδχ), with
n ∈ [0, Nℓ − 1], m ∈ [0, Nχ − 1], δℓ = ∆ℓ/(Nℓ − 1) and δχ = π/Nχ. The grid for the
coordinate χ is shifted by δχ/2 to avoid the singularities of ∆ at χ = 0 and π. For the
inner points, the discrete derivatives can be evaluated as:

∂ψ

∂ℓ

∣∣∣∣
n,m

=
ψn+1,m − ψn−1,m

2δℓ
,

∂ψ

∂χ

∣∣∣∣
n,m

=
ψn,m+1 − ψn,m−1

2δχ
,

∂2ψ

∂ℓ2

∣∣∣∣
n,m

=
ψn+1,m − 2ψn,m + ψn−1,m

δℓ2
,

∂2ψ

∂χ2

∣∣∣∣
n,m

=
ψn,m+1 − 2ψn,m + ψn,m−1

δχ2
.

At the edges of the domain these formulas must be adapted to take into account the
boundary conditions. Assuming that the states are localized around ℓ ≃ r0 it is safe to
assume that the wavefunction vanishes at the ℓ boundaries, provided that ∆ℓ is large
enough, i.e. ψ−1,m = ψNℓ,m = 0. For the χ variable we may use ψn,−1 = ψn,0 and
ψn,Nℓ

= ψn,Nℓ−1 thanks to the rotational invariance on ϕ. These relations enable the
representation of the Laplacian as a penta-diagonal sparse matrix, that can be efficiently
implemented in a computer program.

Figure B.2 shows the result of the groundstate computation using the (ℓ, χ, ϕ) coordi-
nate system (assuming rotational invariance on ϕ), for parameters corresponding to the
last column of Figure 2.6. It uses the second order Floquet expansion, that is accurate
in this situation. The imaginary time propagation converges to a chemical potential of
µ/(2π) = h× 580Hz. It is interesting to notice that the equipotential lines are open and
that a Thomas-Fermi approximation would predict that the density profile would extend
up to the north pole (χ→ 0). As mentioned in chapter 2 the density profile is constrained
by the inhomogeneous transverse trapping frequency.
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Figure B.2: Mean field groundstate
density (grey shadow) in the (χ, ℓ)
coordinates, for N = 105 atoms
in a dressed quadrupole trap, with
α/(2π) = 7.68 kHz/µm, ωrf/(2π) =
300 kHz and Ω0/(2π) = 85 kHz. The
green solid line is the minimum energy
surface. The dashed lines give the ef-
fective detuning between dressed states
(spaced by 10 kHz) and the solid lines
give the equipotential lines (spaced by
h× 1 kHz).
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Appendix C
Rotating harmonic trap

In this appendix I recall the formulas describing the thermodynamics of a harmonic trap
in a rotating frame [Fetter, 2009], with an effective trapping potential:

Veff(r) =
Mω2

r

2
ρ2
(
1− Ω2

ω2
r

)
+
Mω2

z

2
z2,

accounting for the centrifugal term. The trap has a well defined minimum for |Ω| < ωr.
Following the approach of [Gifford and Baym, 2008], I first consider the three-dimensional

Thomas-Fermi limit, at zero termperature, for which density profile is given by:

nBEC(r) =
µ

g3D

(
1− ρ2

R2
− z2

R2
z

)
,

and such that nBEC(r) ≥ 0, with Thomas-Fermi radii R =
√

2µ/(M(ω2
r − Ω2)) and

Rz =
√

2µ/(Mω2
z). The chemical potential obtained from the normalization of the density

profile is:

µ =
ℏω̄
2

(
15N0

as
ā

(
1− Ω2

ω2
r

))2/5

,

where ω̄ = (ω2
rωz)

1/3 is the average trapping frequency (without rotation) and ā =√
ℏ/(Mω̄) is the associated characteristic length.
This description can be extended to finite temperatures, in the regime where one

can neglect the inter-atomic interactions, except to determine the groundstate density
profile. The condensate atom number N0 can be related to the total atom number N
using the ideal Bose gas in a harmonic trap result: N0/N = 1 − (T/Tc)

3, where the
critical temperature is kBTc = ℏω̄(N/ζ(3))1/3 × (1− (Ω/ωr)

2)1/3, taking into account the
effect of rotation, with ζ(3) ≃ 1.202. The effective two-dimensional superfluid density is
then obtained as:

ns(ρ) =

∫
dz nBEC(r) =

4

3

Rzµ

g3D

(
1− ρ2

R2

)3/2

=

√
2

3πazas

(
µ

ℏωz

)3/2(
1− ρ2

R2

)3/2

,

where as is the s-wave scattering length fixing the interaction strength: g3D = 4πℏ2as/M .
The peak two-dimensional superfluid phase-space density Ds = ns(ρ = 0)Λ2 is then:

Ds ≃ 1.7996×
[
ā

as

]2/5 [
ωr
ωz

]2/3
N4/15Tc

T

[
1− T 3

T 3
c

]3/5 [
1− Ω2

ω2
r

]4/15
. (C.1)
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According to the criterion discussed in section 3.2.3, an upper bound on the melting
temperature can be estimated by solving Ds(Tm) ≃ 87. Equation (C.1) shows that Ds

is a decreasing function of both T/Tc and Ω/ωr, as a consequence Tm/Tc decreases when
Ω/ωr increases. Furthermore, Tm/Tc decreases when ωz increases, making it easier to
observe the melting transition in a oblate trap.

It is interesting to consider the two-dimensional limit ωz ≫ ωr, neglecting the subtleties
of the Kosterlitz-Thouless transition. In that case we may identify the two-dimensional
superfluid and condensate densities:

ns(ρ) =
µ

g2D

(
1− ρ2

R2

)
,

where g2D = (ℏ2/M) ×
√
8πas/az is the effective two-dimensional interaction strength.

Using the normalization of the density to the condensate atom number I obtain the
chemical potential:

µ = ℏωr

(√
8

π

as
az
N0

(
1− Ω2

ω2
r

))1/2

.

Similarly to the three-dimensional case, we can use the ideal Bose gas result to obtain
an estimate of the finite temperature chemical potential, using the relation N0/N =
1 − (T/Tc)

2, where the two-dimensional critical temperature is kBTc = ℏωr(6N(1 −
(Ω/ωr)

2))1/2/π. The resulting peak two-dimensional phase-space density is then:

Ds ≃ 2.03
Tc
T

(
az
as

(
1− T 2

T 2
c

))1/2

.

With that model, the melting temperature Tm depends on the rotation rate Ω/ωr only
through Tc.

Finally one can use an estimation based on the Kosterlitz-Thouless equation of state,
for the total phase-space density D(µ/(kBT )) and the superfluid phase-space density
Ds(µ/(kBT )), where both quantities depend on the dimensionless interaction strength g̃.
Within the local density approximation, the total atom number is given by:

N =

(
kBT

ℏωr

)2(
1− Ω2

ω2
r

)−1 ∫ µ
kBT

∞
duD(u),

and the critical temperature Tc is defined by:

N =

(
kBTc
ℏωr

)2(
1− Ω2

ω2
r

)−1 ∫ µc
kBTc

∞
duD(u),

where µc/(kBTc) is given in equation (2.1). Comparing the last two equations allows to
write an implicit equation for

T

Tc
=

∫ µc
kBTc

−∞ duD(u)∫ µ
kBT

−∞ duD(u)

1/2

.

Similarly, the peak superfluid fraction depends only on µ/(kBT ), i.e. Ds(µ/(kBT )), and
can be thus written has a function of T/Tc. Solving Ds ≃ 87 thus gives the upper bound
for the melting temperature. Here, similarly to the two-dimensional BEC estimate, the
rotation rate enters only through the definition of the critical temperature.

108



Bibliography

[1] M. J. Ablowitz, and H. Segur (1981), Solitons and the Inverse Scattering Transform,
Vol. 127 (Society for Industrial and Applied Mathematics).

[2] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle (2001), “Observation
of vortex lattices in Bose-Einstein condensates,” Science 292 (5516), 476–479.

[3] K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, and F. Ferlaino (2014), “Reach-
ing Fermi degeneracy via universal dipolar scattering,” Physical Review Letters 112,
010404.

[4] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino
(2012), “Bose-Einstein condensation of Erbium,” Physical Review Letters 108 (21),
210401.

[5] L. Amico, G. Birkl, M. Boshier, and L.-C. Kwek (2017), “Focus on atomtronics-
enabled quantum technologies,” New Journal of Physics 19 (2), 020201.

[6] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cor-
nell (1995), “Observation of Bose-Einstein condensation in a dilute atomic vapor,”
Science 269 (5221), 198–201.

[7] J. R. Anglin (2001), “Local vortex generation and the surface mode spectrum of
large Bose-Einstein condensates,” Physical Review Letters 87 (24), 240401.

[8] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner (2009), “A quantum gas
microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature
462 (7269), 74–77.

[9] A. J. Barker, S. Sunami, D. Garrick, A. Beregi, K. Luksch, E. Bentine, and C. J.
Foot (2020), “Realising a species-selective double well with multiple-radiofrequency-
dressed potentials,” Journal of Physics B: Atomic, Molecular and Optical Physics
53 (15), 10.1088/1361-6455/ab9152.

[10] S. Beattie, S. Moulder, R. J. Fletcher, and Z. Hadzibabic (2013), “Persistent cur-
rents in spinor condensates,” Physical Review Letters 110 (2), 025301.

[11] E. Bentine, A. J. Barker, K. Luksch, S. Sunami, T. L. Harte, B. Yuen, C. J. Foot,
D. J. Owens, and J. M. Hutson (2020), “Inelastic collisions in radiofrequency-dressed
mixtures of ultracold atoms,” Physical Review Research 2 (3), 33163.

109

http://dx.doi.org/10.1137/1.9781611970883
http://dx.doi.org/ 10.1126/science.1060182
http://dx.doi.org/10.1103/PhysRevLett.112.010404
http://dx.doi.org/10.1103/PhysRevLett.112.010404
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/ 10.1088/1367-2630/aa5a6d
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/ 10.1103/PhysRevLett.87.240401
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/ 10.1088/1361-6455/ab9152
http://dx.doi.org/ 10.1088/1361-6455/ab9152
http://dx.doi.org/ 10.1103/PhysRevLett.110.025301
http://dx.doi.org/ 10.1103/physrevresearch.2.033163


Bibliography

[12] E. Bentine, T. L. Harte, K. Luksch, A. J. Barker, J. Mur-Petit, B. Yuen, and
C. J. Foot (2017), “Species-selective confinement of atoms dressed with multiple
radiofrequencies,” Journal of Physics B: Atomic, Molecular and Optical Physics
50 (9), 094002.

[13] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti (2016), “Transport in out-of-
equilibrium XXZ chains: Exact profiles of charges and currents,” Physical Review
Letters 117, 207201.

[14] D. J. Bishop, and J. D. Reppy (1978), “Study of the superfluid transition in two-
dimensional 4He films,” Physical Review Letters 40, 1727–1730.

[15] P. B. Blakie (2008), “Numerical method for evolving the projected Gross-Pitaevskii
equation,” Physical Review E 78 (2), 026704.

[16] I. Bloch, J. Dalibard, and S. Nascimbène (2012), “Quantum simulations with ul-
tracold quantum gases,” Nature Physics 8 (4), 267–276.

[17] I. Bloch, J. Dalibard, and W. Zwerger (2008), “Many-body physics with ultracold
gases,” Reviews of Modern Physics 80 (3), 885–964.

[18] I. Bouchoule, and J. Dubail (2022), “Generalized hydrodynamics in the one-
dimensional Bose gas: theory and experiments,” Journal of Statistical Mechanics:
Theory and Experiment 2022 (1), 014003.

[19] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet (1995), “Evidence of
Bose-Einstein condensation in an atomic gas with attractive interactions,” Physical
Review Letters 75 (9), 1687–1690.

[20] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard (2004), “Fast rotation of a Bose-
Einstein condensate.” Physical review letters 92 (5), 050403.

[21] K. A. Burrows, H. Perrin, and B. M. Garraway (2017), “Nonadiabatic losses from
radio-frequency-dressed cold-atom traps: Beyond the Landau-Zener model,” Phys-
ical Review A 96, 023429.

[22] Y. Cai, D. G. Allman, P. Sabharwal, and K. C. Wright (2022), “Persistent currents
in rings of ultracold fermionic atoms,” Physical Review Letters 128 (15), 150401.

[23] L. D. Carr, C. W. Clark, and W. P. Reinhardt (2000), “Stationary solutions of the
one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity,”
Physical Review A 62, 063610.

[24] D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer (2000),
“Beam splitter for guided atoms,” Physical Review Letters 85 (26), 5483–5487.

[25] Y. Castin (2001), “Bose-Einstein condensates in atomic gases: Simple theoretical
results,” in Coherent atomic matter waves (Springer Berlin Heidelberg, Berlin, Hei-
delberg) pp. 1–136.

[26] Y. Castin (2004), “Simple theoretical tools for low dimension Bose gases,” Journal
de Physique IV (Proceedings) 116, 89–132.

110

http://dx.doi.org/ 10.1088/1361-6455/aa67ce
http://dx.doi.org/ 10.1088/1361-6455/aa67ce
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1103/PhysRevLett.40.1727
http://dx.doi.org/10.1103/PhysRevE.78.026704
http://dx.doi.org/ 10.1038/nphys2259
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1088/1742-5468/ac3659
http://dx.doi.org/10.1088/1742-5468/ac3659
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/ 10.1103/PhysRevLett.92.050403
http://dx.doi.org/10.1103/PhysRevA.96.023429
http://dx.doi.org/10.1103/PhysRevA.96.023429
http://dx.doi.org/ 10.1103/PhysRevLett.128.150401
http://dx.doi.org/ 10.1103/PhysRevA.62.063610
http://dx.doi.org/10.1103/PhysRevLett.85.5483
http://dx.doi.org/10.1007/3-540-45338-5_1
http://dx.doi.org/10.1051/jp4:2004116004
http://dx.doi.org/10.1051/jp4:2004116004


Bibliography

[27] Y. Castin, and R. Dum (1996), “Bose-Einstein condensates in time dependent
traps,” Physical Review Letters 77 (27), 5315–5319.

[28] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura (2016), “Emergent hydrody-
namics in integrable quantum systems out of equilibrium,” Physical Review X 6,
041065.

[29] F. Chevy, and S. Stringari (2003), “Kelvin modes of a fast rotating Bose-Einstein
condensate,” Physical Review A 68 (5), 053601.

[30] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga (2010), “Feshbach resonances in
ultracold gases,” Reviews of Modern Physics 82 (2), 1225–1286.

[31] S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich (2011), “102ℏk large
area atom interferometers,” Physical Review Letters 107 (13), 130403.

[32] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène,
J. Beugnon, and J. Dalibard (2015), “Emergence of coherence via transverse con-
densation in a uniform quasi-two-dimensional Bose gas,” Nature Communications
6, 6162.

[33] I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell (2003), “Observation
of Tkachenko oscillations in rapidly rotating Bose-Einstein condensates,” Physical
Review Letters 91 (10), 100402.

[34] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg (1998), Atom-Photon In-
teractions: Basic Processes and Applications (Wiley).

[35] Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V. Lorent, and H. Perrin
(2004), “Ultracold atoms confined in rf-induced two-dimensional trapping poten-
tials,” Europhysics Letters 67 (4), 593.

[36] N. Cooper (2008), “Rapidly rotating atomic gases,” Advances in Physics 57 (6),
539–616.

[37] L. Corman (2016), The two-dimensional Bose gas in box potentials, Ph.D. thesis
(École normale supérieure, Université Paris Sciences Lettres).

[38] L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène,
J. Dalibard, and J. Beugnon (2014), “Quench-induced supercurrents in an annular
Bose gas,” Physical Review Letters 113 (13), 135302.

[39] E. A. Cornell, and C. E. Wieman (2002), “Nobel lecture: Bose-Einstein conden-
sation in a dilute gas, the first 70 years and some recent experiments,” Reviews of
Modern Physics 74 (3), 875–893.

[40] M. Cozzini (2006), “Diffused vorticity approach to the oscillations of a rotating Bose-
Einstein condensate confined in a harmonic plus quartic trap,” Pramana 66 (1),
31–42.

[41] M. Cozzini, A. L. Fetter, B. Jackson, and S. Stringari (2005), “Oscillations of a
Bose-Einstein condensate rotating in a harmonic plus quartic trap,” Physical Review
Letters 94, 100402.

111

http://dx.doi.org/ 10.1103/PhysRevLett.77.5315
http://dx.doi.org/10.1103/PhysRevX.6.041065
http://dx.doi.org/10.1103/PhysRevX.6.041065
http://dx.doi.org/10.1103/PhysRevA.68.053601
http://dx.doi.org/ 10.1103/RevModPhys.82.1225
http://dx.doi.org/ 10.1103/PhysRevLett.107.130403
http://dx.doi.org/10.1038/ncomms7162
http://dx.doi.org/10.1038/ncomms7162
http://dx.doi.org/10.1103/PhysRevLett.91.100402
http://dx.doi.org/10.1103/PhysRevLett.91.100402
http://dx.doi.org/ 10.1002/9783527617197
http://dx.doi.org/ 10.1002/9783527617197
http://dx.doi.org/ 10.1209/epl/i2004-10095-7
http://dx.doi.org/ 10.1080/00018730802564122
http://dx.doi.org/ 10.1080/00018730802564122
https://theses.hal.science/tel-01449982v1
http://dx.doi.org/10.1103/PhysRevLett.113.135302
http://dx.doi.org/ 10.1103/RevModPhys.74.875
http://dx.doi.org/ 10.1103/RevModPhys.74.875
http://dx.doi.org/10.1007/BF02704935
http://dx.doi.org/10.1007/BF02704935
http://dx.doi.org/10.1103/PhysRevLett.94.100402
http://dx.doi.org/10.1103/PhysRevLett.94.100402


Bibliography

[42] M. Cozzini, and S. Stringari (2003), “Macroscopic dynamics of a Bose-Einstein
condensate containing a vortex lattice,” Physical Review A 67 (4), 041602.

[43] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari (1999), “Theory of Bose-
Einstein condensation in trapped gases,” Reviews of Modern Physics 71 (3), 463–
512.

[44] K. B. Davis, M. O. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle (1995), “Bose-Einstein condensation in a gas of
sodium atoms,” Physical Review Letters 75 (22), 3969–3973.

[45] C. De Rossi (2016), Gaz de Bose en dimension deux : modes collectifs, superfluidité
et piège annulaire, Ph.D. thesis (Université Paris 13, Sorbonne Paris Cité).

[46] C. De Rossi, R. Dubessy, K. Merloti, M. de Goër de Herve, T. Badr, A. Perrin,
L. Longchambon, and H. Perrin (2016), “Probing superfluidity in a quasi two-
dimensional Bose gas through its local dynamics,” New Journal of Physics 18 (6),
062001.

[47] C. De Rossi, R. Dubessy, K. Merloti, M. de Goër de Herve, T. Badr, A. Per-
rin, L. Longchambon, and H. Perrin (2017), “The scissors oscillation of a quasi
two-dimensional Bose gas as a local signature of superfluidity,” Journal of Physics:
Conference Series 793 (1), 012023.

[48] G. Del Pace, K. Xhani, A. Muzi Falconi, M. Fedrizzi, N. Grani, D. Hernandez Ra-
jkov, M. Inguscio, F. Scazza, W. Kwon, and G. Roati (2022), “Imprinting persistent
currents in tunable fermionic rings,” Physical Review X 12 (4), 041037.

[49] B. DeMarco, and D. S. Jin (1999), “Onset of Fermi degeneracy in a trapped atomic
gas,” Science 285 (5434), 1703–1706.

[50] R. Desbuquois (2013), Thermal and superfluid properties of the two–dimensional
Bose gas, Ph.D. thesis (Université Pierre et Marie Curie - Paris VI).

[51] R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg, and
J. Dalibard (2012), “Superfluid behaviour of a two-dimensional Bose gas,” Nature
Physics 8 (9), 645–648.

[52] R. Desbuquois, T. Yefsah, L. Chomaz, C. Weitenberg, L. Corman, S. Nascimbène,
and J. Dalibard (2014), “Determination of scale-invariant equations of state with-
out fitting parameters: Application to the two-dimensional Bose gas across the
Berezinskii-Kosterlitz-Thouless transition,” Physical Review Letters 113, 020404.

[53] S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich
(2013), “Multiaxis inertial sensing with long-time point source atom interferometry,”
Physical Review Letters 111 (8), 83001.

[54] B. Doyon, J. Dubail, R. Konik, and T. Yoshimura (2017), “Large-scale description
of interacting one-dimensional Bose gases: Generalized hydrodynamics supersedes
conventional hydrodynamics,” Physical Review Letters 119 (19), 195301.

[55] B. Doyon, and T. Yoshimura (2017), “A note on generalized hydrodynamics: inho-
mogeneous fields and other concepts,” SciPost Physics 2 (2), 014.

112

http://dx.doi.org/10.1103/PhysRevA.67.041602
http://dx.doi.org/ 10.1103/RevModPhys.71.463
http://dx.doi.org/ 10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/PhysRevLett.75.3969
https://theses.hal.science/tel-02119279v1
http://dx.doi.org/ 10.1088/1367-2630/18/6/062001
http://dx.doi.org/ 10.1088/1367-2630/18/6/062001
http://dx.doi.org/10.1088/1742-6596/793/1/012023
http://dx.doi.org/10.1088/1742-6596/793/1/012023
http://dx.doi.org/10.1103/PhysRevX.12.041037
http://dx.doi.org/10.1126/science.285.5434.1703
https://theses.hal.science/tel-00973469v1
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1103/PhysRevLett.113.020404
http://dx.doi.org/10.1103/PhysRevLett.111.083001
http://dx.doi.org/ 10.1103/PhysRevLett.119.195301
http://dx.doi.org/10.21468/SciPostPhys.2.2.014


Bibliography

[56] N. J. van Druten, and W. Ketterle (1997), “Two-step condensation of the ideal
Bose gas in highly anisotropic traps,” Physical Review Letters 79 (4), 549–552.

[57] J. Dubail (2016), “A more efficient way to describe interacting quantum particles in
1D,” Physics 9 (December), 153.

[58] R. Dubessy, C. De Rossi, T. Badr, L. Longchambon, and H. Perrin (2014), “Imaging
the collective excitations of an ultracold gas using statistical correlations,” New
Journal of Physics 16 (12), 122001.

[59] R. Dubessy, C. De Rossi, M. de Goër de Herve, T. Badr, A. Perrin, L. Longchambon,
and H. Perrin (2018), “Local correlations reveal the superfluid to normal boundary
in a trapped two-dimensional quantum gas,” AIP Conference Proceedings 1936 (1),
020027.

[60] R. Dubessy, T. Liennard, P. Pedri, and H. Perrin (2012a), “Critical rotation of an
annular superfluid Bose-Einstein condensate,” Physical Review A 86, 011602(R).

[61] R. Dubessy, K. Merloti, L. Longchambon, P.-E. Pottie, T. Liennard, A. Perrin,
V. Lorent, and H. Perrin (2012b), “Rubidium-87 Bose-Einstein condensate in an
optically plugged quadrupole trap,” Physical Review A 85, 013643.

[62] R. Dubessy, J. Polo, H. Perrin, A. Minguzzi, and M. Olshanii (2021), “Universal
shock-wave propagation in one-dimensional Bose fluids,” Physical Review Research
3, 013098.

[63] S. Eckel, F. Jendrzejewski, A. Kumar, C. J. Lobb, and G. K. Campbell (2014a),
“Interferometric measurement of the current-phase relationship of a superfluid weak
link,” Physical Review X 4 (3), 031052.

[64] S. Eckel, J. G. Lee, F. Jendrzejewski, C. J. Lobb, G. K. Campbell, and W. T. Hill
(2016), “Contact resistance and phase slips in mesoscopic superfluid-atom trans-
port,” Physical Review A 93 (6), 063619.

[65] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb, W. D.
Phillips, M. Edwards, and G. K. Campbell (2014b), “Hysteresis in a quantized
superfluid ‘atomtronic’ circuit,” Nature 506 (7487), 200–3.

[66] G. El, and M. Hoefer (2016), “Dispersive shock waves and modulation theory,”
Physica D: Nonlinear Phenomena 333, 11–65.

[67] T. Esslinger, and G. Blatter (2006), “Quantum physics: atomic gas in flatland.”
Nature 441 (7097), 1053–1054.

[68] A. L. Fetter (2001), “Rotating vortex lattice in a Bose-Einstein condensate trapped
in combined quadratic and quartic radial potentials,” Physical Review A 64, 063608.

[69] A. L. Fetter (2009), “Rotating trapped Bose-Einstein condensates,” Reviews of Mod-
ern Physics 81 (2), 647–691.

[70] A. L. Fetter, B. Jackson, and S. Stringari (2005), “Rapid rotation of a Bose-Einstein
condensate in a harmonic plus quartic trap,” Physical Review A 71, 013605.

113

http://dx.doi.org/10.1103/PhysRevLett.79.549
http://dx.doi.org/10.1103/Physics.9.153
http://dx.doi.org/10.1088/1367-2630/16/12/122001
http://dx.doi.org/10.1088/1367-2630/16/12/122001
http://dx.doi.org/ 10.1063/1.5025465
http://dx.doi.org/ 10.1063/1.5025465
http://dx.doi.org/10.1103/PhysRevA.86.011602
http://dx.doi.org/ 10.1103/PhysRevA.85.013643
http://dx.doi.org/ 10.1103/PhysRevResearch.3.013098
http://dx.doi.org/ 10.1103/PhysRevResearch.3.013098
http://dx.doi.org/ 10.1103/PhysRevX.4.031052
http://dx.doi.org/ 10.1103/PhysRevA.93.063619
http://dx.doi.org/10.1038/nature12958
http://dx.doi.org/ 10.1016/j.physd.2016.04.006
http://dx.doi.org/ 10.1038/4411053a
http://dx.doi.org/ 10.1103/PhysRevA.64.063608
http://dx.doi.org/ 10.1103/RevModPhys.81.647
http://dx.doi.org/ 10.1103/RevModPhys.81.647
http://dx.doi.org/10.1103/PhysRevA.71.013605


Bibliography

[71] R. J. Fletcher, M. Robert-de Saint-Vincent, J. Man, N. Navon, R. P. Smith, K. G. H.
Viebahn, and Z. Hadzibabic (2015), “Connecting Berezinskii-Kosterlitz-Thouless
and BEC phase transitions by tuning interactions in a trapped gas,” Physical Review
Letters 114, 255302.

[72] R. J. Fletcher, A. Shaffer, C. C. Wilson, P. B. Patel, Z. Yan, V. Crépel, B. Mukher-
jee, and M. W. Zwierlein (2021), “Geometric squeezing into the lowest Landau
level,” Science 372 (6548), 1318–1322.

[73] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and
T. J. Greytak (1998), “Bose-Einstein condensation of atomic Hydrogen,” Physical
Review Letters 81, 3811–3814.

[74] T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi (2007), “Degenerate
Fermi gases of Ytterbium,” Physical Review Letters 98 (3), 030401.

[75] M. Gałka, P. Christodoulou, M. Gazo, A. Karailiev, N. Dogra, J. Schmitt, and
Z. Hadzibabic (2022), “Emergence of isotropy and dynamic scaling in 2d wave tur-
bulence in a homogeneous Bose gas,” Physical Review Letters 129, 190402.

[76] M. Gałka, N. Dogra, R. Lopes, J. Schmitt, and Z. Hadzibabic (2021), “Observation
of first and second sound in a BKT superfluid,” Nature 594, 191–194.

[77] B. M. Garraway, and H. Perrin (2016), “Recent developments in trapping and
manipulation of atoms with adiabatic potentials,” Journal of Physics B: Atomic,
Molecular and Optical Physics 49 (17), 172001.

[78] U. Gasser, C. Eisenmann, G. Maret, and P. Keim (2010), “Melting of crystals in
two dimensions,” ChemPhysChem 11 (5), 963–970.

[79] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic
(2013), “Bose-Einstein condensation of atoms in a uniform potential,” Physical Re-
view Letters 110, 200406.

[80] G. Gauthier, T. A. Bell, A. B. Stilgoe, M. Baker, H. Rubinsztein-Dunlop, and
T. W. Neely (2021), “Chapter one - dynamic high-resolution optical trapping of
ultracold atoms,” (Academic Press) pp. 1–101.

[81] G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. A. Baker, T. A. Bell,
H. Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely (2019), “Giant vortex clusters
in a two-dimensional quantum fluid,” Science 364 (6447), 1264–1267.

[82] S. A. Gifford, and G. Baym (2008), “Dislocation-mediated melting in superfluid
vortex lattices,” Physical Review A 78 (4), 043607.

[83] M. Gildemeister, E. Nugent, B. E. Sherlock, M. Kubasik, B. T. Sheard, and C. J.
Foot (2010), “Trapping ultracold atoms in a time-averaged adiabatic potential,”
Physical Review A 81 (3), 031402.

[84] M. Gildemeister, B. E. Sherlock, and C. J. Foot (2012), “Techniques to cool and
rotate Bose-Einstein condensates in time-averaged adiabatic potentials,” Physical
Review A 85 (5), 053401.

114

http://dx.doi.org/ 10.1103/PhysRevLett.114.255302
http://dx.doi.org/ 10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1126/science.aba7202
http://dx.doi.org/10.1103/PhysRevLett.81.3811
http://dx.doi.org/10.1103/PhysRevLett.81.3811
http://dx.doi.org/ 10.1103/PhysRevLett.98.030401
http://dx.doi.org/10.1103/PhysRevLett.129.190402
http://dx.doi.org/ 10.1038/s41586-021-03537-9
http://dx.doi.org/10.1088/0953-4075/49/17/172001
http://dx.doi.org/10.1088/0953-4075/49/17/172001
http://dx.doi.org/10.1002/cphc.200900755
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1126/science.aat5718
http://dx.doi.org/10.1103/PhysRevA.78.043607
http://dx.doi.org/ 10.1103/PhysRevA.81.031402
http://dx.doi.org/ 10.1103/PhysRevA.85.053401
http://dx.doi.org/ 10.1103/PhysRevA.85.053401


Bibliography

[85] M. Girardeau (1960), “Relationship between systems of impenetrable bosons and
fermions in one dimension,” Journal of Mathematical Physics 1 (6), 516–523.

[86] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau (2005), “Bose-Einstein
condensation of Chromium,” Physical Review Letters 94 (16), 160401.

[87] D. Guéry-Odelin, and S. Stringari (1999), “Scissors mode and superfluidity of a
trapped Bose-Einstein condensed gas,” Physical Review Letters 83, 4452–4455.

[88] Y. Guo (2021), Annular quantum gases in a bubble-shaped trap: from equilibrium to
strong rotations, Ph.D. thesis (Université Sorbonne Paris Nord - Paris XIII).

[89] Y. Guo, R. Dubessy, M. de Goër de Herve, A. Kumar, T. Badr, A. Perrin, L. Long-
chambon, and H. Perrin (2020), “Supersonic rotation of a superfluid: A long-lived
dynamical ring,” Physical Review Letters 124, 025301.

[90] Y. Guo, E. Mercado Gutierrez, D. Rey, T. Badr, A. Perrin, L. Longchambon, V. S.
Bagnato, H. Perrin, and R. Dubessy (2022), “Expansion of a quantum gas in a
shell trap,” New Journal of Physics 24 (9), 093040.

[91] S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn
(2005), “Bose-Einstein condensation in a circular waveguide,” Physical Review Let-
ters 95 (14), 143201.

[92] D. Guéry-Odelin (2000), “Spinning up and down a Boltzmann gas,” Physical Review
A 62 (3), 033607.

[93] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-
Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle
(2001), “Realization of Bose-Einstein condensates in lower dimensions.” Physical
review letters 87 (13), 130402.

[94] Z. Hadzibabic, and J. Dalibard (2013), “BKT physics with two-dimensional atomic
gases,” in 40 Years of Berezinskii–Kosterlitz–Thouless Theory (World Scientific) pp.
297–323.

[95] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard (2006),
“Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas,” Nature
441 (7097), 1118–1121.

[96] V. Hakim (1997), “Nonlinear Schrödinger flow past an obstacle in one dimension,”
Physical Review E 55 (3), 2835–2845.

[97] T. L. Harte, E. Bentine, K. Luksch, A. J. Barker, D. Trypogeorgos, B. Yuen, and
C. J. Foot (2018), “Ultracold atoms in multiple radio-frequency dressed adiabatic
potentials,” Physical Review A 97 (1), 013616.

[98] W. H. Heathcote, E. Nugent, B. T. Sheard, and C. J. Foot (2008), “A ring trap for
ultracold atoms in an RF-dressed state,” New Journal of Physics 10 (4), 043012.

[99] G. Hechenblaikner, J. M. Krueger, and C. J. Foot (2005), “Properties of quasi-two-
dimensional condensates in highly anisotropic traps,” Physical Review A 71 (1),
013604.

115

http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/ 10.1103/PhysRevLett.83.4452
https://theses.hal.science/tel-03481399v1
http://dx.doi.org/ 10.1103/PhysRevLett.124.025301
http://dx.doi.org/10.1088/1367-2630/ac919f
http://dx.doi.org/ 10.1103/PhysRevLett.95.143201
http://dx.doi.org/ 10.1103/PhysRevLett.95.143201
http://dx.doi.org/10.1103/PhysRevA.62.033607
http://dx.doi.org/10.1103/PhysRevA.62.033607
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1142/9789814417648_0009
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevE.55.2835
http://dx.doi.org/ 10.1103/PhysRevA.97.013616
http://dx.doi.org/ 10.1088/1367-2630/10/4/043012
http://dx.doi.org/10.1103/PhysRevA.71.013604
http://dx.doi.org/10.1103/PhysRevA.71.013604


Bibliography

[100] J. Hertkorn, J.-N. Schmidt, F. Böttcher, M. Guo, M. Schmidt, K. S. H. Ng, S. D.
Graham, H. P. Büchler, T. Langen, M. Zwierlein, and T. Pfau (2021), “Density
fluctuations across the superfluid-supersolid phase transition in a dipolar quantum
gas,” Physical Review X 11, 011037.

[101] M. de Goër de Herve (2018), Superfluid dynamics of annular Bose gases, Ph.D.
thesis (Université Paris 13, Sorbonne Paris Cité).

[102] M. de Goër de Herve, Y. Guo, C. De Rossi, A. Kumar, T. Badr, R. Dubessy,
L. Longchambon, and H. Perrin (2021), “A versatile ring trap for quantum gases,”
Journal of Physics B: Atomic, Molecular and Optical Physics 54 (12), 125302.

[103] P. C. Hohenberg (1967), “Existence of long-range order in one and two dimensions,”
Physical Review 158, 383–386.

[104] M. Holzmann, M. Chevallier, and W. Krauth (2008), “Semiclassical theory of the
quasi–two-dimensional trapped Bose gas,” Europhysics Letters 82 (3), 30001.

[105] F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards, C. J. Lobb, and G. K.
Campbell (2014), “Resistive flow in a weakly interacting Bose-Einstein condensate,”
Physical Review Letters 113 (4), 045305.

[106] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Den-
schlag, and R. Grimm (2003), “Bose-Einstein condensation of molecules,” Science
302 (5653), 2101–2103.

[107] I. T. Jolliffe (2012), Principal Component Analysis (Springer New York, NY).

[108] B. D. Josephson (1962), “Possible new effects in superconductive tunnelling,”
Physics Letters 1 (7), 251 – 253.

[109] Y. Kagan, E. L. Surkov, and G. V. Shlyapnikov (1996), “Evolution of a Bose-
condensed gas under variations of the confining potential,” Physical Review A
54 (3), R1753–R1756.

[110] S. Kang, J. Choi, S. W. Seo, W. J. Kwon, and Y. Shin (2015), “Rotating a Bose-
Einstein condensate by shaking an anharmonic axisymmetric magnetic potential,”
Physical Review A 91, 013603.

[111] T. Karpiuk, P. Deuar, P. Bienias, E. Witkowska, K. Pawłowski, M. Gajda,
K. Rzążewski, and M. Brewczyk (2012), “Spontaneous solitons in the thermal
equilibrium of a quasi-1D Bose gas,” Physical Review Letters 109 (20), 205302.

[112] T. Karpiuk, T. Sowiński, M. Gajda, K. Rzążewski, and M. Brewczyk (2015), “Cor-
respondence between dark solitons and the type II excitations of the Lieb-Liniger
model,” Physical Review A 91 (1), 013621.

[113] K. Kasamatsu, M. Tsubota, and M. Ueda (2002), “Giant hole and circular superflow
in a fast rotating Bose-Einstein condensate,” Physical Review A 66, 053606.

[114] G. M. Kavoulakis, and G. Baym (2003), “Rapidly rotating Bose-Einstein con-
densates in anharmonic potentials,” New Journal of Physics 5, 10.1088/1367-
2630/5/1/351.

116

http://dx.doi.org/10.1103/PhysRevX.11.011037
https://theses.hal.science/tel-02019934v2
https://theses.hal.science/tel-02019934v2
http://dx.doi.org/10.1088/1361-6455/ac0579
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1209/0295-5075/82/30001
http://dx.doi.org/ 10.1103/PhysRevLett.113.045305
http://dx.doi.org/10.1126/science.1093280
http://dx.doi.org/10.1126/science.1093280
http://dx.doi.org/10.1007/b98835
http://dx.doi.org/https://doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1103/PhysRevA.54.R1753
http://dx.doi.org/10.1103/PhysRevA.54.R1753
http://dx.doi.org/10.1103/PhysRevA.91.013603
http://dx.doi.org/10.1103/PhysRevLett.109.205302
http://dx.doi.org/10.1103/PhysRevA.91.013621
http://dx.doi.org/10.1103/PhysRevA.66.053606
http://dx.doi.org/10.1088/1367-2630/5/1/351
http://dx.doi.org/10.1088/1367-2630/5/1/351


Bibliography

[115] W. Ketterle (2002), “Nobel lecture: When atoms behave as waves: Bose-Einstein
condensation and the atom laser,” Reviews of Modern Physics 74 (4), 1131–1151.

[116] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn (1999), “Making, probing
and understanding Bose-Einstein condensates,” in Proceedings of the International
School of Physics “\,{E}nrico {F}ermi\,”, Course {CXL}, edited by M. Inguscio,
S. Stringari, and C. E. Wieman (IOS Press) pp. 67–176.

[117] M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, E. A. Hinds, D. J. Richardson,
and P. G. Kazansky (2000), “Propagation of cold atoms along a miniature magnetic
guide,” Physical Review Letters 84 (7), 1371–1373.

[118] S. J. Kim, H. Yu, S. T. Gang, D. Z. Anderson, and J. B. Kim (2016), “Controllable
asymmetric double well and ring potential on an atom chip,” Physical Review A
93 (3), 033612.

[119] T. Kinoshita, T. Wenger, and D. S. Weiss (2006), “A quantum Newton’s cradle,”
Nature 440 (7086), 900–903.

[120] S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr (2009), “Bose-Einstein conden-
sation of alkaline earth atoms: Ca 40,” Physical Review Letters 103 (13), 130401.

[121] A. Kumar, N. Anderson, W. D. Phillips, S. Eckel, G. K. Campbell, and S. Stringari
(2016), “Minimally destructive, Doppler measurement of a quantized flow in a ring-
shaped Bose-Einstein condensate,” New Journal of Physics 18 (2), 25001.

[122] A. Kumar, R. Dubessy, T. Badr, C. De Rossi, M. de Goër de Herve, L. Longcham-
bon, and H. Perrin (2018), “Producing superfluid circulation states using phase
imprinting,” Physical Review A 97, 043615.

[123] A. Kumar, S. Eckel, F. Jendrzejewski, and G. K. Campbell (2017), “Temperature-
induced decay of persistent currents in a superfluid ultracold gas,” Physical Review
A 95 (2), 021602.

[124] W. J. Kwon, G. Moon, S. W. Seo, and Y. Shin (2015), “Critical velocity for vortex
shedding in a Bose-Einstein condensate,” Physical Review A 91 (5), 053615.

[125] L. Lavoine, A. Hammond, A. Recati, D. S. Petrov, and T. Bourdel (2021), “Beyond-
mean-field effects in Rabi-coupled two-component Bose-Einstein condensate,” Phys-
ical Review Letters 127, 203402.

[126] I. Lesanovsky, and W. von Klitzing (2007), “Time-averaged adiabatic potentials:
Versatile matter-wave guides and atom traps,” Physical Review Letters 99, 083001.

[127] E. H. Lieb (1963), “Exact analysis of an interacting Bose gas. II. the excitation
spectrum,” Physical Review 130 (4), 1616–1624.

[128] E. H. Lieb, and W. Liniger (1963), “Exact analysis of an interacting Bose gas. I.
the general solution and the ground state,” Physical Review 130 (4), 1605–1616.

[129] T. Liennard (2011), Construction d’un montage de condensation de Bose–Einstein
de rubidium et étude théorique d’un superfluide en rotation dans un anneau, Ph.D.
thesis (Université Paris 13).

117

http://dx.doi.org/ 10.1103/RevModPhys.74.1131
http://dx.doi.org/ 10.1103/PhysRevLett.84.1371
http://dx.doi.org/ 10.1103/PhysRevA.93.033612
http://dx.doi.org/ 10.1103/PhysRevA.93.033612
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/ 10.1103/PhysRevLett.103.130401
http://dx.doi.org/10.1088/1367-2630/18/2/025001
http://dx.doi.org/ 10.1103/PhysRevA.97.043615
http://dx.doi.org/10.1103/PhysRevA.95.021602
http://dx.doi.org/10.1103/PhysRevA.95.021602
http://dx.doi.org/ 10.1103/PhysRevA.91.053615
http://dx.doi.org/10.1103/PhysRevLett.127.203402
http://dx.doi.org/10.1103/PhysRevLett.127.203402
http://dx.doi.org/10.1103/PhysRevLett.99.083001
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1103/PhysRev.130.1605
https://theses.hal.science/tel-00667804
https://theses.hal.science/tel-00667804


Bibliography

[130] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto (2009),
“Rapid production of 87rb Bose-Einstein condensates in a combined magnetic and
optical potential,” Physical Review A 79 (6), 063631.

[131] C. Lobo, A. Sinatra, and Y. Castin (2004), “Vortex lattice formation in Bose-
Einstein condensates,” Physical review letters 92 (2), 020403.

[132] M. Lu, N. Q. Burdick, and B. L. Lev (2012), “Quantum degenerate dipolar Fermi
gas,” Physical Review Letters 108 (21), 215301.

[133] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev (2011), “Strongly dipolar Bose-
Einstein condensate of Dysprosium,” Physical Review Letters 107 (19), 190401.

[134] K. Luksch, E. Bentine, A. J. Barker, S. Sunami, T. L. Harte, B. Yuen, and C. J.
Foot (2019), “Probing multiple-frequency atom-photon interactions with ultracold
atoms,” New Journal of Physics 21 (7), 073067.

[135] E. Lundh (2002), “Multiply quantized vortices in trapped Bose-Einstein conden-
sates,” Physical Review A 65 (4), 043604.

[136] K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard (2001), “Stationary states of
a rotating Bose-Einstein condensate: Routes to vortex nucleation,” Physical Review
Letters 86 (20), 4443–4446.

[137] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard (2000), “Vortex forma-
tion in a stirred Bose-Einstein condensate,” Physical Review Letters 84, 806–809.

[138] N. Malvania, Y. Zhang, Y. Le, J. Dubail, M. Rigol, and D. S. Weiss (2021), “Gen-
eralized hydrodynamics in strongly interacting 1D Bose gases,” Science 373 (6559),
1129–1133.

[139] O. M. Maragò, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J.
Foot (2000), “Observation of the scissors mode and evidence for superfluidity of a
trapped Bose-Einstein condensed gas,” Physical Review Letters 84 (10), 2056–2059.

[140] H. Mas, S. Pandey, G. Vasilakis, and W. von Klitzing (2019), “Bi-chromatic adia-
batic shells for atom interferometry,” New Journal of Physics 21 (12), 123039.

[141] K. Merloti (2013), Condensat de Bose-Einstein dans un piège habillé : modes collec-
tifs d’un superfluide en dimension deux, Ph.D. thesis (Université Paris 13, Sorbonne
Paris Cité).

[142] K. Merloti, R. Dubessy, L. Longchambon, M. Olshanii, and H. Perrin (2013a),
“Breakdown of scale invariance in a quasi-two-dimensional Bose gas due to the
presence of the third dimension,” Physical Review A 88, 061603.

[143] K. Merloti, R. Dubessy, L. Longchambon, A. Perrin, P.-E. Pottie, V. Lorent, and
H. Perrin (2013b), “A two-dimensional quantum gas in a magnetic trap,” New Jour-
nal of Physics 15 (3), 033007.

[144] N. D. Mermin, and H. Wagner (1966), “Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic Heisenberg models,” Physical Review
Letters 17, 1133–1136.

118

http://dx.doi.org/10.1103/PhysRevA.79.063631
http://dx.doi.org/ 10.1103/PhysRevLett.92.020403
http://dx.doi.org/ 10.1103/PhysRevLett.108.215301
http://dx.doi.org/ 10.1103/PhysRevLett.107.190401
http://dx.doi.org/ 10.1088/1367-2630/ab2f60
http://dx.doi.org/10.1103/PhysRevA.65.043604
http://dx.doi.org/10.1103/PhysRevLett.86.4443
http://dx.doi.org/10.1103/PhysRevLett.86.4443
http://dx.doi.org/ 10.1103/PhysRevLett.84.806
http://dx.doi.org/10.1126/science.abf0147
http://dx.doi.org/10.1126/science.abf0147
http://dx.doi.org/10.1103/PhysRevLett.84.2056
http://dx.doi.org/ 10.1088/1367-2630/ab5ca1
https://theses.hal.science/tel-00949914v1
http://dx.doi.org/ 10.1103/PhysRevA.88.061603
http://dx.doi.org/ 10.1088/1367-2630/15/3/033007
http://dx.doi.org/ 10.1088/1367-2630/15/3/033007
http://dx.doi.org/ 10.1103/PhysRevLett.17.1133
http://dx.doi.org/ 10.1103/PhysRevLett.17.1133


Bibliography

[145] Y. Miyazawa, R. Inoue, H. Matsui, G. Nomura, and M. Kozuma (2022), “Bose-
Einstein condensation of Europium,” Physical Review Letters 129 (22), 223401.

[146] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio (2001),
“Bose-Einstein condensation of Potassium atoms by sympathetic cooling,” Science
294 (5545), 1320–1322.

[147] O. Morizot, Y. Colombe, V. Lorent, H. Perrin, and B. M. Garraway (2006), “Ring
trap for ultracold atoms,” Physical Review A 74 (2), 023617.

[148] S. Moulder, S. Beattie, R. P. Smith, N. Tammuz, and Z. Hadzibabic (2012), “Quan-
tized supercurrent decay in an annular Bose-Einstein condensate,” Physical Review
A 86 (1), 013629.

[149] B. Mukherjee, A. Shaffer, P. B. Patel, Z. Yan, C. C. Wilson, V. Crépel, R. J.
Fletcher, and M. Zwierlein (2022), “Crystallization of bosonic quantum Hall states
in a rotating quantum gas,” Nature 601, 58–62.

[150] D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cor-
nell (1999), “Guiding neutral atoms around curves with lithographically patterned
current-carrying wires,” Physical Review Letters 83 (25), 5194–5197.

[151] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon (2010), “Exploring
the thermodynamics of a universal Fermi gas,” Nature 463 (7284), 1057–1060.

[152] G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark, L. Chomaz,
and F. Ferlaino (2019), “Excitation spectrum of a trapped dipolar supersolid and
its experimental evidence,” Physical Review Letters 123, 050402.

[153] P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, and W. Von Klitzing (2016),
“Matter-wave interferometers using TAAP rings,” New Journal of Physics 18 (7),
10.1088/1367-2630/18/7/075014.

[154] B. Naylor, A. Reigue, E. Maréchal, O. Gorceix, B. Laburthe-Tolra, and L. Vernac
(2015), “Chromium dipolar Fermi sea,” Physical Review A 91 (1), 011603.

[155] S. Nazarenko (2011), Wave Turbulence, Vol. 825 (Springer Berlin Heidelberg).

[156] C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock (2010),
“Detection of small atom numbers through image processing,” Physical Review A
82, 061606.

[157] M. Olshanii, H. Perrin, and V. Lorent (2010), “Example of a quantum anomaly in
the physics of ultracold gases,” Physical Review Letters 105 (9), 095302.

[158] S. Pandey, H. Mas, G. Drougakis, P. Thekkeppatt, V. Bolpasi, G. Vasilakis,
K. Poulios, and W. von Klitzing (2019), “Hypersonic Bose–Einstein condensates in
accelerator rings,” Nature 570 (7760), 205–209.

[159] F. Pereira Dos Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel,
C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji (2001), “Bose-Einstein
condensation of metastable Helium,” Physical Review Letters 86 (16), 3459–3462.

119

http://dx.doi.org/10.1103/PhysRevLett.129.223401
http://dx.doi.org/ 10.1126/science.1066687
http://dx.doi.org/ 10.1126/science.1066687
http://dx.doi.org/10.1103/PhysRevA.74.023617
http://dx.doi.org/ 10.1103/PhysRevA.86.013629
http://dx.doi.org/ 10.1103/PhysRevA.86.013629
http://dx.doi.org/10.1038/s41586-021-04170-2
http://dx.doi.org/10.1103/PhysRevLett.83.5194
http://dx.doi.org/10.1038/nature08814
http://dx.doi.org/ 10.1103/PhysRevLett.123.050402
http://dx.doi.org/10.1088/1367-2630/18/7/075014
http://dx.doi.org/10.1088/1367-2630/18/7/075014
http://dx.doi.org/10.1103/PhysRevA.91.011603
http://dx.doi.org/ 10.1007/978-3-642-15942-8
http://dx.doi.org/10.1103/PhysRevA.82.061606
http://dx.doi.org/10.1103/PhysRevA.82.061606
http://dx.doi.org/ 10.1103/PhysRevLett.105.095302
http://dx.doi.org/ 10.1038/s41586-019-1273-5
http://dx.doi.org/10.1103/PhysRevLett.86.3459


Bibliography

[160] H. Perrin, and B. M. Garraway (2017), “Chapter four - trapping atoms with ra-
dio frequency adiabatic potentials,” Advances In Atomic, Molecular, and Optical
Physics 66, 181–262.

[161] L. P. Pitaevskii, and A. Rosch (1997), “Breathing modes and hidden symmetry of
trapped atoms in two dimensions,” Physical Review A 55 (2), R853–R856.

[162] J. Polo, R. Dubessy, P. Pedri, H. Perrin, and A. Minguzzi (2019), “Oscillations
and decay of superfluid currents in a one-dimensional Bose gas on a ring,” Physical
Review Letters 123, 195301.

[163] N. Prokof’ev, O. Ruebenacker, and B. Svistunov (2001), “Critical point of a weakly
interacting two-dimensional Bose gas,” Physical Review Letters 87, 270402.

[164] N. Prokof’ev, and B. Svistunov (2002), “Two-dimensional weakly interacting Bose
gas in the fluctuation region,” Physical Review A 66, 043608.

[165] N. P. Proukakis, and B. Jackson (2008), “Finite-temperature models of
Bose–Einstein condensation,” Journal of Physics B: Atomic, Molecular and Optical
Physics 41 (20), 203002.

[166] A. Rakonjac, A. L. Marchant, T. P. Billam, J. L. Helm, M. M. H. Yu, S. A. Gardiner,
and S. L. Cornish (2016), “Measuring the disorder of vortex lattices in a Bose-
Einstein condensate,” Physical Review A 93, 013607.

[167] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb,
K. Helmerson, W. D. Phillips, and G. K. Campbell (2011), “Superflow in a toroidal
Bose-Einstein condensate: An atom circuit with a tunable weak link,” Physical
Review Letters 106 (13), 130401.

[168] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin (2007), “Strong saturation
absorption imaging of dense clouds of ultracold atoms,” Optics Letters 32 (21),
3143.

[169] D. Rey (2023), Control and optimization of a Bose-Einstein condensation experi-
ment, Ph.D. thesis (Université Sorbonne Paris Nord - Paris XIII).

[170] D. Rey, S. Thomas, R. Sharma, T. Badr, L. Longchambon, R. Dubessy, and H. Per-
rin (2022), “Loading a quantum gas from a hybrid dimple trap to a shell trap,”
Journal of Applied Physics 132 (21), 214401.

[171] S. J. Rooney, P. B. Blakie, B. P. Anderson, and A. S. Bradley (2011), “Suppression
of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates,”
Physical Review A 84 (2), 023637.

[172] A. Roussou, J. Smyrnakis, M. Magiropoulos, N. K. Efremidis, W. von Klitzing, and
G. M. Kavoulakis (2019), “Fragility of the bosonic Laughlin state,” Physical Review
A 99 (5), 053613.

[173] C. Ryu, M. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. Phillips
(2007), “Observation of persistent flow of a Bose-Einstein condensate in a toroidal
trap,” Physical Review Letters 99 (26), 260401.

120

http://dx.doi.org/10.1016/bs.aamop.2017.03.002
http://dx.doi.org/10.1016/bs.aamop.2017.03.002
http://dx.doi.org/10.1103/PhysRevA.55.R853
http://dx.doi.org/10.1103/PhysRevLett.123.195301
http://dx.doi.org/10.1103/PhysRevLett.123.195301
http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1103/PhysRevA.66.043608
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1103/PhysRevA.93.013607
http://dx.doi.org/10.1103/PhysRevLett.106.130401
http://dx.doi.org/10.1103/PhysRevLett.106.130401
http://dx.doi.org/ 10.1364/OL.32.003143
http://dx.doi.org/ 10.1364/OL.32.003143
http://dx.doi.org/10.1063/5.0123440
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1103/PhysRevA.99.053613
http://dx.doi.org/10.1103/PhysRevA.99.053613
http://dx.doi.org/10.1103/PhysRevLett.99.260401


Bibliography

[174] C. Ryu, and M. G. Boshier (2015), “Integrated coherent matter wave circuits,” New
Journal of Physics 17 (9), 92002.

[175] C. Ryu, E. C. Samson, and M. G. Boshier (2020), “Quantum interference of currents
in an atomtronic SQUID,” Nature Communications 11 (1), 2–7.

[176] A. K. Saha, and R. Dubessy (2021), “Dynamical phase diagram of a one-dimensional
Bose gas in a box with a tunable weak link: From Bose-Josephson oscillations to
shock waves,” Physical Review A 104, 023316.

[177] A. K. Saha, and R. Dubessy (2022), “Characterizing far from equilibrium states of
the one-dimensional nonlinear Schrödinger equation,” .

[178] R. Saint-Jalm, P. C. Castilho, Le Cerf, B. Bakkali-Hassani, J. L. Ville, S. Nascim-
bene, J. Beugnon, and J. Dalibard (2019), “Dynamical symmetry and breathers in
a two-dimensional Bose gas,” Physical Review X 9 (2), 21035.

[179] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail (2019), “Generalized hydro-
dynamics on an atom chip,” Physical Review Letters 122 (9), 90601.

[180] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and
C. Salomon (2001), “Quasipure Bose-Einstein condensate immersed in a Fermi sea,”
Physical Review Letters 87 (8), 080403.

[181] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-
Joseph, J. Schmiedmayer, and P. Krüger (2005), “Matter-wave interferometry in a
double well on an atom chip,” Nature Physics 1, 57–62.

[182] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. a. Cornell
(2004), “Rapidly rotating Bose-Einstein condensates in and near the lowest Landau
level,” Physical Review Letters 92 (4), 040404.

[183] S. R. Segal, Q. Diot, E. A. Cornell, A. A. Zozulya, and D. Z. Anderson (2010),
“Revealing buried information: Statistical processing techniques for ultracold-gas
image analysis,” Physical Review A 81 (5), 53601.

[184] B. E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, and C. J. Foot (2011),
“Time-averaged adiabatic ring potential for ultracold atoms,” Physical Review A
83 (4), 043408.

[185] T. P. Simula, M. J. Davis, and P. B. Blakie (2008), “Superfluidity of an interacting
trapped quasi-two-dimensional Bose gas,” Physical Review A 77, 023618.

[186] S. Sinha, and Y. Castin (2001), “Dynamic instability of a rotating Bose-Einstein
condensate,” Physical Review Letters 87 (19), 190402.

[187] D. A. Steck (2021), “Rubidium 87 D line data,” Available online at
http://steck.us/alkalidata (revision 2.2.2, 9 July 2021).

[188] S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck (2009), “Bose-Einstein
condensation of Strontium,” Physical Review Letters 103 (20), 200401.

[189] S. Stringari (1996a), “Collective excitations of a trapped Bose-condensed gas,” Phys-
ical Review Letters 77, 2360–2363.

121

http://dx.doi.org/ 10.1088/1367-2630/17/9/092002
http://dx.doi.org/ 10.1088/1367-2630/17/9/092002
http://dx.doi.org/10.1038/s41467-020-17185-6
http://dx.doi.org/10.1103/PhysRevA.104.023316
http://dx.doi.org/ 10.48550/ARXIV.2210.09812
http://dx.doi.org/ 10.48550/ARXIV.2210.09812
http://dx.doi.org/ 10.1103/PhysRevX.9.021035
http://dx.doi.org/ 10.1103/PhysRevLett.122.090601
http://dx.doi.org/10.1103/PhysRevLett.87.080403
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1103/PhysRevLett.92.040404
http://dx.doi.org/10.1103/PhysRevA.81.053601
http://dx.doi.org/ 10.1103/PhysRevA.83.043408
http://dx.doi.org/ 10.1103/PhysRevA.83.043408
http://dx.doi.org/10.1103/PhysRevA.77.023618
http://dx.doi.org/10.1103/PhysRevLett.87.190402
http://steck.us/alkalidata
http://dx.doi.org/10.1103/PhysRevLett.103.200401
http://dx.doi.org/10.1103/PhysRevLett.77.2360
http://dx.doi.org/10.1103/PhysRevLett.77.2360


Bibliography

[190] S. Stringari (1996b), “Moment of inertia and superfluidity of a trapped Bose gas,”
Physical Review Letters 76, 1405–1408.

[191] A. Sugarbaker, S. M. Dickerson, J. M. Hogan, D. M. S. Johnson, and M. A.
Kasevich (2013), “Enhanced atom interferometer readout through the application
of phase shear,” Physical Review Letters 111 (11), 113002.

[192] S. Sunami, V. P. Singh, D. Garrick, A. Beregi, A. J. Barker, K. Luksch, E. Ben-
tine, L. Mathey, and C. J. Foot (2022), “Observation of the Berezinskii-Kosterlitz-
Thouless transition in a two-dimensional Bose gas via matter-wave interferometry,”
Physical Review Letters 128, 250402.

[193] P. Suret, A. Tikan, F. Bonnefoy, F. Copie, G. Ducrozet, A. Gelash, G. Prabhudesai,
G. Michel, A. Cazaubiel, E. Falcon, G. El, and S. Randoux (2020), “Nonlinear spec-
tral synthesis of soliton gas in deep-water surface gravity waves,” Physical Review
Letters 125 (26), 264101.

[194] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki,
and Y. Takahashi (2003), “Spin-singlet Bose-Einstein condensation of two-electron
atoms,” Physical Review Letters 91 (4), 040404.

[195] V. Tkachenko (1966), “Stability of vortex lattices,” Soviet Journal of Experimental
and Theoretical Physics 23 (6), 1049.

[196] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G.
Hulet (2001), “Observation of Fermi pressure in a gas of trapped atoms,” Science
291 (5513), 2570–2572.

[197] T. Tsuzuki (1971), “Nonlinear waves in the Pitaevskii-Gross equation,” Journal of
Low Temperature Physics 4 (4), 441–457.

[198] Y.-H. Wang, A. Kumar, F. Jendrzejewski, R. M. Wilson, M. Edwards, S. Eckel,
G. K. Campbell, and C. W. Clark (2015), “Resonant wavepackets and shock waves
in an atomtronic SQUID,” New Journal of Physics 17 (12), 125012.

[199] G. Watanabe, G. Baym, and C. J. Pethick (2004), “Landau levels and the Thomas-
Fermi structure of rapidly rotating Bose-Einstein condensates,” Physical Review
Letters 93, 190401.

[200] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm (2003), “Bose-Einstein
condensation of Cesium,” Science 299 (5604), 232–235.

[201] P. B. Wigley, P. J. Everitt, K. S. Hardman, M. R. Hush, C. H. Wei, M. A. Sooriya-
bandara, P. Manju, J. D. Close, N. P. Robins, and C. C. N. Kuhn (2016), “Non-
destructive shadowgraph imaging of ultra-cold atoms,” Optics Letters 41 (20), 4795.

[202] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and G. K. Campbell
(2013a), “Driving phase slips in a superfluid atom circuit with a rotating weak link,”
Physical Review Letters 110 (2), 025302.

[203] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and G. K. Campbell
(2013b), “Threshold for creating excitations in a stirred superfluid ring,” Physical
Review A 88 (6), 063633.

122

http://dx.doi.org/10.1103/PhysRevLett.76.1405
http://dx.doi.org/ 10.1103/PhysRevLett.111.113002
http://dx.doi.org/10.1103/PhysRevLett.128.250402
http://dx.doi.org/ 10.1103/PhysRevLett.125.264101
http://dx.doi.org/ 10.1103/PhysRevLett.125.264101
http://dx.doi.org/10.1103/PhysRevLett.91.040404
http://dx.doi.org/10.1126/science.1059318
http://dx.doi.org/10.1126/science.1059318
http://dx.doi.org/10.1007/BF00628744
http://dx.doi.org/10.1007/BF00628744
http://dx.doi.org/10.1088/1367-2630/17/12/125012
http://dx.doi.org/ 10.1103/PhysRevLett.93.190401
http://dx.doi.org/ 10.1103/PhysRevLett.93.190401
http://dx.doi.org/10.1126/science.1079699
http://dx.doi.org/10.1364/ol.41.004795
http://dx.doi.org/10.1103/PhysRevLett.110.025302
http://dx.doi.org/10.1103/PhysRevA.88.063633
http://dx.doi.org/10.1103/PhysRevA.88.063633


Bibliography

[204] T. M. Wright, R. J. Ballagh, A. S. Bradley, P. B. Blakie, and C. W. Gardiner
(2008), “Dynamical thermalization and vortex formation in stirred two-dimensional
Bose-Einstein condensates,” Physical Review A 78, 063601.

[205] O. Zobay, and B. M. Garraway (2001), “Two-dimensional atom trapping in field-
induced adiabatic potentials,” Physical Review Letters 86, 1195–1198.

[206] O. Zobay, and B. M. Garraway (2004), “Atom trapping and two-dimensional Bose-
Einstein condensates in field-induced adiabatic potentials,” Physical Review A 69,
023605.

123

http://dx.doi.org/ 10.1103/PhysRevA.78.063601
http://dx.doi.org/10.1103/PhysRevLett.86.1195
http://dx.doi.org/ 10.1103/PhysRevA.69.023605
http://dx.doi.org/ 10.1103/PhysRevA.69.023605

	Curriculum Vitae
	Education and employment
	Professional offices
	Supervision and management of research activities
	Teaching duties, responsibilities and dissemination

	Publications
	Research works published in international peer-reviewed journals
	Proceedings with peer-review
	Conferences – talks
	Conferences – posters


	Introduction
	Overview of the experiment
	The ultracold atom machine
	The Rubidium 87 atom
	The vacuum chamber
	The laser system
	The magnetic traps

	The sequence
	MOT loading
	Magnetic transport
	Evaporation

	Tools and diagnosis
	Eight channel DDS
	Imaging
	Additional beams

	Conclusion

	Two-dimensional superfluids
	Context: ultra-cold atoms in flatland
	The Kosterlitz-Thouless transition
	Ultracold atoms in quasi two dimensions
	Adiabatic potentials

	Models for deeply degenerate trapped Bose gases
	The Gross-Pitaevskii equation
	Extension to finite temperatures: classical fields
	Time-of-flight scaling solution

	Experimental realization
	The dressed quadrupole trap
	Loading strategies
	Low energy collective modes

	Going beyond flatland
	An effective anti-gravity force
	Controlled expansion of a quantum gas in a shell trap
	The effect of the transverse confinement

	Conclusion

	Rotating superfluids on a curved surface
	How to probe superfluidity ?
	The scissors mode
	Analysis of the local dynamics
	Local correlations analysis

	Melting of a vortex lattice
	Reaching the groundstate in a rotating frame
	Spin-up evaporation mechanism
	Hints of a melting transition

	Fast rotating superfluids
	The giant vortex transition
	Observation of a supersonic superfluid flow
	Landau levels picture

	Conclusion

	A superfluid in a ring trap
	Context: the emergence of atomtronics
	Atomic waveguides
	Adiabatic potentials for atomtronics
	Painted potentials

	Tools to describe one-dimensional superfluids
	The Gross-Pitaevskii equation on a line
	Generalized hydrodynamics
	The inverse scattering transform

	Out of equilibrium phenomena
	Transport through a barrier
	Shock waves in one dimension
	A quantitative study of gray-solitons

	Conclusion

	Conclusion
	The dressed quadrupole trap in the rotating wave approximation
	The dressed quadrupole trap beyond the rotating wave approximation
	General formalism
	Approximate analytic solution
	An example: the dressed quadrupole trap
	Map to spheroidal coordinates

	Rotating harmonic trap

